
Purpose
A common goal for refactoring projects is to improve the performance of a piece of
software without affecting its overall functionality. Achieving this goal often requires
the programmer to alter the program's internal data layout to enable the use of
algorithms with asymptotically better performance. Unfortunately, a program's
domain logic is often tightly coupled with the chosen data layout, such that changing
the layout requires extensive changes in the program's logic routines. In addition to
being costly, this creates a risk of unintentionally introducing a change in behavior.
The goal of this project is to develop a mechanism that mitigates these problems by
decoupling domain logic code from the internal layout of data.

Background
An early attempt to address this problem, information hiding, was presented by
David Parnas. He proposed that programs should be divided into modular
components, and that the interface between these components should be defined in
terms of functionality rather than any particular data structure. This allows the
algorithms and data structures used within a module to be changed without affecting
the other modules.

Around the same time, E. F. Codd recognized a similar problem in the design of
database systems. Contemporary databases were tree-structured and provided only
limited access paths to the data they contained; reorganizing the data in response to
changing demands regularly broke these access paths, requiring extensive changes to
the programs and processes that depended on the data. To address this problem, he
developed relational algebra, a mathematical model of data that is independent of
how it is represented internally.

In the intervening decades, both of these developments have proven to be pivotal
innovations in their respective domains. Both Parnas and Codd were awarded ACM
Fellowships for their work, and Codd received a Turing award for the invention of
relational algebra.

May 2021

The project: Memquery
Memquery is a framework for managing a program's internal data, based on the
principles of relational algebra. It is designed to reduce the coupling between three
distinct programming roles:

Application programmers who are primarily concerned with the correctness of a
single feature or use case of a program,

Architects who are primarily concerned with the overall performance and
maintainability of a program, and

Library authors who are primarily concerned with inventing new data
organization schemes that can be used in multiple programs.

Memquery presents an abstract, relational, view of a program's data to application
programmers which is independent of the data layout chosen by the architect. The
run-time cost of this abstraction is minimized by leveraging Rust's algebraic type
system and other compile-time programming features, which allows query planning
to occur during program compilation.

Listing 1 shows typical usage. (a) is the schema definition, which describes how the
data is laid out in memory. In this case, it consists of three relations: part
descriptions, project descriptions, and a commitment relation describing the number
of each part assigned to various projects. (b) is a piece of code that, given a project
name, will print the name and quantity of all the parts committed to that project.
Changing the indexing strategy or adding additional fields to the schema does not
require any change to this query code.

Case Study
Codd describes five different data structures for an inventory management
problem; two indexing strategies were chosen for each structure. Each of these ten
solutions (see Table 1) was implemented with both Memquery and traditional
techniques. The performance of each Memquery implementation is then compared
with its traditional counterpart, and the query code is analyzed for maintainability.

Discussion and further work
The Memquery prototype system demonstrates that relational algebra can be used in
general-purpose programming to decouple program logic from the organization of
data in memory, while retaining the performance benefits that come from
reorganizing that data.

Further investigation is required to determine the best way to integrate this
capability into modern software development practices. Additionally, the prototype
does not currently support some operations commonly provided by databases, such
as grouped and aggregate queries.

A B

C D

AA

Using Relational Algebra to Facilitate Safe Using Relational Algebra to Facilitate Safe
Refactoring for Performance in RustRefactoring for Performance in Rust

Eric Michael Sumner

Supervisors: Snorri Agnarsson and Hjálmtýr Hafsteinsson, Háskóli Íslands

Results
Figure 1 shows the performance results of a sample query for each of the
implemented data structures; (a) shows the Memquery results and (b) shows the
results for a traditional approach. In each case, Memquery's performance is
comparable to the corresponding traditional implementation.

In the control implementations, the query code is tightly coupled to the chosen data
structure: Changing to a different structure requires re-engineering the query from
first principles. All of the Memquery implementations, on the other hand, use nearly
the same query code: Adopting a new structure for the data requires only minimal
changes, which can be applied mechanically.

Figure 1 Performance of Sample Queries

Table 1 Studied data structures

References
D. L. Parnas. 1972. On the criteria to be used in decomposing systems into
modules. Commun. ACM 15, 12 (Dec. 1972), 1053–1058.
DOI:https://doi.org/10.1145/361598.361623

E. F. Codd. 1970. A relational model of data for large shared data banks.
Commun. ACM 13, 6 (June 1970), 377–387.
DOI:https://doi.org/10.1145/362384.362685

// (a) Schema definition
// NB: Column definitons omitted
pub struct Inventory {
 parts: BTreeIndex<PartId, Option<(PartId, PartName)>>,
 projects: BTreeIndex<ProjectId, Option<(ProjectId, ProjectName)>>,
 commits: RedundantIndex<ProjectId, PartId,
 BTreeIndex<PartId, Vec<(ProjectId, PartId, Quantity)>>>,
}

// (b) Sample query
for (qty, name) in self.projects.as_ref()
 .join(self.commits.as_ref())
 .join(self.parts.as_ref())
 .where_eq(&ProjectName(String::from(proj_name)))
 .iter_as::<(Quantity, PartName)>() {
 println!("Part #{}: {} units committed", name.0, qty.0);
}

Listing 1 Sample Memquery usage

	PowerPoint Presentation

