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Abstract
The choice of how to organize data in memory has a significant effect on the overall
efficiency of computer programs. Changing requirements over time may require this
choice  to  be  revisited  after  a  program's  initial  development  has  been  completed.
Historically,  data  retrieval  routines  and program logic  have been strongly coupled,
which hinders the maintenance programmer's ability to reorganize a program's data
without introducing new logic faults.

This  paper  proposes  a  new  framework,  Memquery,  which  separates  these  two
concerns, allowing a program's internal data to be reorganized without major changes
to  its  logic  routines.  The theoretical  basis  for  this  framework is  relational  algebra,
which has served a similar role in database systems for the past 50 years. A prototype
of  the  Memquery  framework  is  presented.  A  comparison  study  with  traditional
development techniques demonstrates that this prototype is capable of producing more
maintainable programs with similar performance characteristics.

Útdráttur
Skipan gagna í minni tölvunnar hefur veruleg áhrif á keyrsluhraða forrita. Kröfur um
virkni sem breytast í tímans rás geta valdið því að breyta þarf skipan gagna eftir að
frumgerð er forrituð. Venjan er sú að gagnameðhöndlun sé sterklega samofin annarri
virkni  hvers  forrits,  sem gerir  forritara  sem  vinnur  í  viðhaldi  forritsins  erfiðara  að
breyta skipan gagna án þess að valda því að nýjar villur læðist inn.

Í þessari ritgerð er kynnt nýtt kerfi, Memquery, sem aðskilur þessi tvö vandamál og
gerir  kleift  að  endurskipuleggja  innri  gögn  forrits  án  verulegra  breytinga  á  annarri
virkni.  Fræðilegi  grunnurinn  fyrir  þessu  kerfi er  venslaalgebra,  sem  hefur  þjónað
samsvarandi hlutverki í gagnagrunnskerfum síðastliðin 50 ár.  Frumgerð af Memquery
kerfinu  er  kynnt.  Samanburður  við  hefðbundnar  þróunaraðferðir  sýnir  að  þessi
frumgerð gerir kleift að þróa forrit sem eru auðveldari í viðhaldi en hafa sambærilegan
hraða.
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1 Introduction
One common aspect across engineering projects of all disciplines is that maintenance
costs tend to dominate the costs of initial development; software development is no
exception. 50 years ago, David Parnas recognized this and introduced the concept of
information  hiding as  a  mechanism  to  improve  the  maintainability  of  software  [1].
Around the same time, E. F. Codd published his formulation of relational algebra to
improve the maintainability of database systems [2]. Over the intervening half-century,
both  of  these  papers  have come to  be  viewed as  seminal  works in  their  respective
domains and the concepts they introduced are still widely relevant to modern practice.
Despite this, few people have noted that these two papers fundamentally address the
same problem: Isolating the semantic logic of a program from the particular storage
strategy used for the required data.

Their two solutions differ in character, however: Parnas develops a set of guidelines for
API design that can facilitate the ability to replace one storage implementation with
another, and relies on the judgment of the programmer to keep the guidelines in mind
when designing an API for a new domain. Codd, on the other hand, is considering only
a  single  class  of  program:  database  storage  systems.  He  develops  a  mathematical
model  for  these  databases  that  allows  the  database  users  to  have  an  expressive,
semantic interface to the stored data while the database administrators remain free to
change the underlying structure to support changing workloads.

Modern algebraic type systems are powerful enough to model Codd's relational algebra
directly [3], and this can be used to facilitate Parnas' information hiding mechanically.
This provides similar advantages to software maintenance as the adoption of relational
databases has brought to database administration. In particular, as the capabilities and
usage  patterns  of  a  piece  of  software  evolve,  the  original  data  storage  and  access
strategy often becomes suboptimal. The use of relational algebra in the original design
allows  this  strategy  to  be  updated  with  minimal  coding  effort,  which  reduces
maintenance costs in two ways:

• Coupling between program logic and data access routines within a program is
reduced, which reduces the likelihood that a data model change will introduce
logic faults.

• Data  access  algorithms  can  be  written  once  and  deployed  as  modular
components  in  many  programs.  Any  maintenance  effort  applied  to  these
reusable modules then benefits many programs instead of just one.
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1.1 Organization of This Document

This paper describes Memquery, a prototype library intended to demonstrate that the
relational  model  is  a  viable  alternative  to  traditional  approaches  for  managing  a
program's in-memory data. The remainder of this chapter discusses prior work in this
area.

Memquery is implemented in Rust. As a relatively new programming language, Rust
may be unfamiliar to many readers; chapter 2 provides an informal overview of Rust's
core features.

Relational  algebra  demands  more  complicated  relationships  between  types  than  is
necessary  for  typical  Rust  programs.  A domain-specific  language,  Tylisp,  has  been
developed  to  provide  a  more  ergonomic  syntax  for  expressing  these  complicated
relationships between types. Chapter 3 describes the usage and features of Tylisp.

Chapter 4 describes the Memquery library itself. Each subchapter consists of a topic
overview followed by reference-style descriptions of each defined type and trait.

To demonstrate  the efficacy of  Memquery ,  chapter  5 presents a  comparison  study
between  programs  implemented  with  Memquery  and  Rust's  standard-library
collections. 

Chapter 6 discusses the limitations of the current Memquery library, and what work
would be necessary to further develop it into a production-ready, rather than prototype,
library.

1.2 Information Hiding

In his paper, Parnas discusses several different software design problems: A system for
producing keyword-in-context  (KWIC) indices, a  Markov algorithm compiler,  and a
Markov algorithm interpreter. For each of these problems, he describes two candidate
modularizations.

The  first  modularization  represents  common  practice  circa  1971.  It  includes  one
module for each processing step, and the output of each module serves as the input to
the next module in the sequence. Because data stored in core memory serves as the
interface between modules, its format must be precisely defined before implementation
work can begin on the individual modules.

The second modularization demonstrates information hiding, Parnas' proposed criteria
for dividing a program into modules. Instead of steps in a process, Parnas envisions
each  module  as  a  service  which  encapsulates  one  "difficult  design  decision."  The
interface for each module is designed to be independent of the particular choice made
by the module's implementor.
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In many cases, this approach naturally produces a hierarchy: Modules at any given
level depend only on modules in lower levels of the hierarchy, and the lowest-level
modules  operate  independently.  This  allows  for  a  subtree  of  modules  to  be  easily
transplanted from one program to another.

Parnas demonstrates this with the Markov compiler and interpreter: In the traditional
modularizations, there is little common structure that could be shared between the two
implementations. When viewed as a set of services, however, there are several modules
that appear in both programs, such as a mechanism to store rules and a pattern matcher
that can interpret those rules.

Information hiding also allows design decisions to be revisited later in development.
For the KWIC indexer, Parnas identified a number of questionable design assumptions
and examined which modules would be affected if they were to change. In each case,
the  necessary  changes  were  confined  to  a  single  module  in  the  information-hiding
modularization, but spanned many modules in the traditional modularization.

For  the  purposes  of  this  paper,  it  is  interesting to  note  that  these  potential  design
changes primarily concern the internal memory layout of the program. For example:

• Should all text lines be loaded into memory, or should they be read from disk on
demand?

• Should characters be stored individually, or should they be packed several to a
machine word?

• Should circular shifts be realized, or should they be stored as an index into the
line storage?

17



1.3 Relational Algebra as Information Hiding

Codd's  paper  is  concerned  not  with  program  structure,  but  with  the  challenges  of
interacting  with  databases.  Nevertheless,  Codd  comes  to  the  same  conclusion  as
Parnas: Because the internal representation of data will inevitably change over time, an
abstract interface to the data must be provided which allows access to many different
internal representations. From his abstract:

“Future users of large data banks must be protected from having to know how the
data is organized in the machine (the internal representation). ... Most application
programs should remain unaffected when the internal representation of data is
changed and even when some aspects of the external representation are changed.
Changes in data representation will  often be needed as a  result  of  changes in
query,  update,  and  report  traffic  and  natural  growth  in  the  types  of  stored
information.

-- from “A relational model of data for large shared data banks.” [2]

These statements hold true whether the "large data banks" are stored on disk or in core
memory.

Codd goes on to describe three kinds of data dependencies that relational algebra is
intended  to  break:  ordering,  indexing,  and  access  path  dependence.  In  modern
programs,  each  of  these  dependency  types  remains  a  common  source  of  coupling
between data storage and application logic routines.

Ordering dependence occurs when the program logic is dependent on the particular
order  records  appear  in  the  data  store.  If  it  becomes necessary  to  alter  this  stored
ordering,  the  application  code  will  break.  In  many  programs,  this  is  mitigated  by
declaring that records are stored in an arbitrary, unspecified order; algorithms that rely
on a particular ordering must first sort the records according to the algorithm's needs.
If a useful storage ordering is later adopted, however, these extra sorting steps need to
be found and removed manually.

Indexing dependence occurs when the program logic is aware of the particular indices
that are present on a data store. If an index is added, algorithms that could benefit from
using  the  index  must  be  located  and  modified  to  gain  any  benefit.  If  an  index  is
removed,  any algorithm that relies on that index must be rewritten to either  use a
different index or a sequential scan. The difficulty of maintaining consistency between
an  index  and  the  main  data  store  often  leads  programmers  to  use  unindexed  data
structures, even when an index would be beneficial.

Access path dependence occurs when program logic needs to know one piece of data in
order to access some other, related piece of data. This most often occurs when data is
stored  in  a  mapping,  such  as  a  hashtable:  In  order  to  access  a  property,  the
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corresponding hash key must be known. In cases where the hash key is not known, the
program must explicitly search all entries in the table. If the mapping key is changed,
all routines that use the map must be updated to use the new key.

Relational algebra is designed to present a uniform interface for accessing conceptually
tabular  data,  which  can  be  efficiently  implemented  for  a  wide  variety  of  internal
representations. Each table, known as a relation, is characterized by a set of named
columns and an unordered set of records. In addition to a name, each column specifies
the domain of values that it may contain; every record in a relation contains one value
for each named column of its relation.

 The overall goal of a relational-algebra based system is to provide a property that Codd
calls symmetric exploitation: The operations required to obtain a given subset of stored
data should not rely on the internal representation used by the database. Instead, a
program should only need to know which relations exist  and the columns that  any
given relation contains.

To this end, relational algebra defines a number of operators that can be used to refine
the set of relations stored in a database into a single relation that contains only the data

relevant to a single subprogram, such as:

• Projection, which involves striking out or reordering columns.

• Selection,  which  involves  striking  out  records  which  do  not  meet  a  given
condition.

• Joining two  relations,  which  involves  finding  pairs  of  records  where  the
columns common to both relations contain equal values.

The particular implementation of these operators will be necessarily dependent on the
internal  representation used by  the  database,  but  those  details  can  be hidden from
database users. This is exactly the property that Parnas' concept of information hiding
requires for defining a module's interface.

1.4 Prior Art: Language-Integrated Query (LINQ)

Memquery  is  not  the  first  attempt  to  bring  relational-algebra  concepts  to  general
purpose programming. Designed by Erik Meijer and integrated into Microsoft's .NET
suite of languages, LINQ promises to provide a unified interface to all kinds of data
sources [4]. From a user's perspective, this is certainly the case: Meijer relaxed some of
Codd's constraints to produce a more general system based on relational algebra; a
system  that,  when  used  within  an  appropriate  domain,  produces  identical  results.
These generalizations, however, cause problems for both users and implementors of
new data sources.
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1.4.1 Symmetric Exploitation

One  key  design  principle  of  relational  algebra  is  the  ability  for  every  field  in  the
datastore to be used in any logical position. Codd termed this symmetric exploitation.

The ability for every field in the datastore to be used in any logical position within a
query. Meijer, for instance, describes how to write a LINQ provider that only supports
a single, extremely specific, form of query [5]. The ability to transpose the two where
clauses is "left as an exercise for the reader". This omission wasn't just for sake of
brevity: Oren Eini provides a case study of writing several real-world LINQ providers;
its conclusion recommends that system designers "choose a conventional way to define
each supported operation. [They] will be much better off if ... users' input can be made
to follow specific patterns." [6]

Part  of  the  justification  for  this  approach  is  that  the  API  shouldn't  pretend  to  be
capable  of  queries  that  it  can't  execute  performantly.  On  the  contrary,  symmetric
exploitation is key to maintaining a separation of concerns between the capabilities of
the data store and the operational logic of the program. When the query structure is
required to match the internal layout of the data provider, it is impossible to change the
data layout without also changing the query.  Instead of  expressing semantic  intent
directly, these queries describe a particular strategy for fetching data. The maintenance
programmer must then infer the original intent of each query from this strategy and
accompanying documentation. This increases the cost and risk of adjusting the internal
data layout, which is often a necessary component of efforts to improve performance.

1.4.2 Practical Deficiencies

LINQ's design also causes practial problems when trying to implement data providers.
An implementor must choose between two interfaces,  IEnumerable or  IQueryable.
Often, neither is ideal.

LINQ's ability to query IEnumerable types is the core of its ability to provide a unified
query  interface.  IEnumerable's  simplicity,  however,  prevents  LINQ  from  making
optimized queries.  IEnumerable is .NET's standard iteration interface, implemented
by many core types ranging from generic collections to the file system interface. To be
applicable to so many disparate types, IEnumerable is a lowest-common-denominator
interface: It has a single method that returns a cursor. This cursor can do only three
things: retrieve the current item, step to the next item, and rewind to the beginning. If a
query needs to skip over some items, there is no faster way than one at a time. Neither
is there any facility for ordering, which would be required to halt a query early.

To provide a more sophisticated query implementation, a data provider must instead
implement the IQueryable interface. This interface produces a cursor from a provided
a syntax tree. The language described by this tree is quite complex. There are no less
than 25 different node types, including lambda definitions, operators, goto statements,
and method calls [8]. Each of these node types has its own set of properties, possible
child nodes, and variants. Eini describes the process of implementing IQueryable as
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equivalent to writing a compiler.  Even worse, .NET provides no facililty to execute
subexpressions; every provider must implement the whole language itself.

In practice, then, the prospective implementor is faced with a dilemma: He/she can
implement  IEnumerable easily  and  provide  full  functionality  to  users,  but  with
fundamentally limited performance. Or, they can implement IQueryable, which will
require  a  large  quantity  of  code  with  many  branching  paths,  code  that,  due  to  its
inherent complexity, will undoubtedly be the source of many bugs.

1.4.3 Memquery's Solution

Memquery addresses these problems by using a separable intermediate representation
for queries. Each query is represented as an intersection of filter clauses. Custom data
sources  need  only  provide  a  specialized  implementation  for  those  clauses  they can
efficiently implement. All the other clauses are applied in a final filtering step, without
the data source needing to know what test is being applied. For example, one clause
may be used for a local BTree index lookup while another is handed to the provider
stored in the BTree value and yet a third is used to filter the ultimate results, all within
the same query (cf. §4.6).

Instead of a syntax tree, Memquery gains its flexibility from a series of lazy adapter
objects. Each of these objects represents a relational operation that has been applied to
one or more source relations.  It  is  a fully-functional  view, or derived relation,  that
operates lazily: When it receives a query request, it dispatches some related query to its
sources, which may in turn be other views. It then applies a transformation to each row
returned from these queries to produce its own result rows (cf. §4.7).
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2 The Rust Programming Language
Rust  is  a  relative  newcomer  to  the  world  of  systems  programming  languages.
Originally  developed  as  a  research  project  by  Mozilla  in  2010  to  address  the
shortcomings of C and C++, it  is now an independent project supported by several
industry partners including Amazon, Huawei, Google, and Microsoft [9].

2.1 Design Principles

Rust's design is guided by a desire to make high-performance software with a minimal
maintenance burden. Many of these design decisions are based the observation that
several  kinds of defect require a disproportionate amount of effort to correct.  Rust,
therefore,  makes  an  effort  to  systematically  minimize  the  occurrence  of  these
particularly troublesome defects [10].

These  defects  fall  into  two  broad  categories:  inconsistent  behavior  and  forward-
compatibility hazards. Defects that exhibit inconsistent behavior may appear to work
correctly  some  or  most  of  the  time,  but  occasionally  cause  the  program  to  fail.
Forward-compatibility hazards are not defects per se, but have the potential to become
defects due to changes elsewhere that appear innocuous.

The mechanisms that Rust has put in place to combat these defects usually impose a
compile-time cost only. For times when even this minimal cost is too great, however,
Rust  provides  an  escape  hatch:  By  using  the  unsafe keyword,  a  programmer  can
exempt sections of code from some of these extra requirements. This keyword, then,
signals the presence of code that needs to be manually checked for correctness.

2.1.1 Inconsistent Behavior

Inconsistent  behavior  can  occur  whenever  a  program  interacts  with  a  complex  or
opaque system, such as a memory allocator, thread scheduler, or program optimizer.
These  systems  generally  provide  narrowly-drafted  guarantees  about  their  behavior.
Presented with a situation outside these guarantees, the system will often still behave
as  the  programmer  might  expect.  Under  these  conditions,  however,  small  external
changes may cause a program to produce incorrect results without warning.

Accessing memory after it has been formally returned to the allocator is known as a
use-after-free  fault.  If  the  allocator  has  not  yet  reissued  the  memory  for  another
allocation, there will be no apparent error. In Rust, as in most programming languages,
the particular strategy used by the allocator is not specified and subject to change for
any reason. A particular sequence of user inputs or compiling a program for a different
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architecture, for example, may cause a previously innocuous use-after-free to manifest
as an error. This error will not necessarily occur anywhere near the problematic code:
Any  allocation  in  the  program  can  become  corrupted  due  to  an  erroneous  write
somewhere else.  Rust uses a system of ownership and lifetime annotations (§2.2.3) to
ensure that no outstanding references to an object exist at the point when its memory is
returned to the allocator for potential re-use.

Improper  synchronization between multiple threads of execution can lead to a data
race, where one thread writes to memory concurrently with a read in another thread. If
the two concurrent accesses happen to occur at different times, the program will appear
to  operate  correctly.  Sometimes,  though,  the  thread  scheduler  may  interrupt  the
writing thread while it is in the middle of modifying the shared memory, which then
allows the reading thread to see an inconsistent state.  To guard against this kind of
problem, Rust tags every type with whether or not it is synchronized for concurrent
access,  and  references  to  unsynchronized  memory  are  prevented  from  being
transmitted between threads.

There are too many kinds of inconsistent behavior to enumerate them here. These two
examples are representative of Rust's strategy for preventing this kind of programming
error: Information relevant to deciding whether or not an action should be allowed is
encoded in the type system, and problematic operations are only allowed to operate on
values of an appropriate type.

2.1.2 Forward Compatibility

Another  kind  of  long-reaching  defect  stems  from  the  independent  development  of
interoperating  modules.  If  an  application  programmer  relies  on  some  property  of  a
software  library,  then  the  library  author  can  no  longer  alter  that  property  without
breaking the application code. This problem is particularly acute when the library is
widely distributed and used by many different applications. To combat this, Rust treats
type  signatures  as  explicit  contracts  between  library  and  application  programmers.
Every type constraint serves a dual purpose: it is a minimum requirement for code that
wishes  to  call  the  function  and  a  listing  of  all  the  capabilities  the  function
implementation is allowed to rely upon.

Polymorphism  in  Rust  is  based  on  traits,  which  are  similar  to  interfaces  in  other
languages. Each trait represents some capability that a type has, and type bounds are
expressed  as  a  series  of  required  traits.  There  is  deliberately  no  mechanism  for
requiring the absence of a trait, which gives library programmers the freedom to add
trait  implementations  without  risk  of  breaking  application  code.  At  the  interface
between modular parts, Rust generally requires explicit annotations for any property
that affects the situations where that code can be used, even if it theoretically could be
determined automatically. This gives library authors the ability to reserve a portion of
the design space for future changes, without fear of breaking users' code. Perhaps a
concrete example will make this more clear:
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If a type implements the  Copy trait, then the compiler knows that the value can be
safely copied using a bit-for-bit copy with no additional procedures. Some examples of
Copy types are integers and shared references. Certain other types fundamentally can't
ever  be  Copy:  Reference-counted  pointers  (Rc)  need  to  update  the  count  whenever
they're duplicated and exclusive references (&mut) can't be duplicated at all without
violating non-aliasing guarantees.

Compound types could theoretically implement Copy automatically if all of their fields
also implement Copy. If this were done, however, it would create a software evolution
hazard: A type could implement Copy by accident because its implementation doesn't
happen  to  include  any  non-Copy fields.  The  developer  is  then  constrained  from
changing  the  implementation  to  add  a  non-Copy field  without  potentially  breaking
downstream users who were relying on the  Copy functionality. Rust instead allows
developers full latitude for changing their implementations and provides tools to opt
into restrictions on themselves that allow downstream users more flexibility.

2.1.3 Integrating Manual Verification

No  automated  analysis  mechanism,  however,  is  capable  of  verifying  all  correct
programs. Moreover, these non-analyzable programs often have desirable properties,
such  as  a  fast  execution  speed.  Rust  sidesteps  this  problem  by  allowing  the
programmer to mark sections of code for human verification: the unsafe keyword. Code
within  these  unsafe  sections  are  allowed  to  do  certain  things  that  are  disallowed
outside them.

“The only things that are different in Unsafe Rust are that you can:

◦ Dereference raw pointers
◦ Call  unsafe functions (including C functions, compiler intrinsics, and the

raw allocator)
◦ Implement unsafe traits
◦ Mutate statics
◦ Access fields of unions

-- from The Rustonomicon, §1.2 “What Unsafe Rust Can Do” [10]

There are primarily two ways to attach semantic meaning to a data type. The first is to
express it via the type's name and documentation. From the compiler's perspective,
this is a completely implicit definition: If the type is misused, there is no way for the
compiler to notice. The alternative, which is preferred Rust style, is to restrict which
code is allowed to construct each type. If there are only a few different constructors,
then semantic information can be encoded in the assertions those constructors make: If
a value of the type exists, it must be valid.

In  order  for  user-specified  types  to  maintain  useful  invariants,  the  language  must
provide a way for the type's author to restrict the changes that can be made.  Rust
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accomplishes this via a fine-grained privacy system. By default, access to individual
types, fields, and functions is restricted to the module that defines them. Additional
modules can be provided access to  these items by annotating them as  public.  This
allows library authors to maintain the integrity of type invariants by disallowing access
to the type's underlying fields and instead providing access through constructors and
methods that enforce the relevant invariants.

Due  to  the  expressiveness  of  Rust's  type  system,  these  invariants  can  often  be
expressed  as  type  constraints,  which  allows  the  compiler  to  reject  programs  that
violate  invariants  instead  of  producing  a  runtime  error.  This  allows  for  more
performant final code by omitting runtime validity checks: If a value of a type exists,
then its invariants have been upheld. For example, Rust's  String type is internally a
vector of bytes.  All  safe methods to construct a  String,  however, ensure that this
vector contains valid UTF-8 encoded data.  Any functions that operate on  Strings,
then,  can  safely  ignore  the  possibility  that  they will  encounter  data  of  some other
encoding.

If  a function is marked as safe to call,  it  may still  contain unsafe code: This is an
assertion  by  the  programmer  that  all  necessary  preconditions  are  enforced
mechanically.  Much  of  Rust's  standard  library,  for  instance,  relies  on  unsafe  code
internally but presents a safe API for application programmers. Jung, et al. formally
verified the soundness of this approach in general, and also confirmed that the standard
library's implementations are correct [11].

2.2 Data Model

When reasoning about Rust code, it is often helpful to think in terms of typeclasses, sets
of types that all share some common properties. Rust has several different mechanisms
to describe typeclasses, depending on the nature of the properties that they share:

• The class of types with a particular set of fields is represented by a  generic
datatype.

• The class of types which exhibit  a particular behavior is represented by a
trait.

• The  class  of  types  which  are  valid  for  a  particular  period  of  time  is
represented by a lifetime annotation.

In generic code, an externally-specified type is represented by a type parameter. This
parameter is a local identifier that acts in all ways like a concrete type name. The types
that are allowed to bind to a particular parameter are specified by a special kind of
expression, a type bound. Each type bound specifies one or more typeclasses; any type
that is a member of all the listed typeclasses is valid.
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Within the scope of a type parameter, it may only be used in a way that will be valid for
all possible type bindings. This analysis is completely local: The compiler rejects code
that attempts to use any property that is not provided by one of the typeclasses in
corresponding bound expression.

2.2.1 Compound Datatypes

Arrays  [T;N] and slices [T] represent a contiguous region of memory that contains
several instances of a uniform type  T. Arrays contain a fixed number of elements  N,
which must be known at compile time.  Slices,  on the other hand,  may contain any
number of elements. Because they have a size known only at runtime, slices are subject
to certain restrictions in where they may be used; these restrictions are discussed in
more detail in §2.2.5.

Tuples  (A,B,...) are  ad-hoc compound types which represent a sequence of  values
with dissimilar types A, B, etc. Tuple types are automatically defined by their argument
types, and do not need to be explicitly declared before use.

Structures (struct) are explicitly-named types with a common memory layout. Each
structure  definition  specifies  zero  or  more  fields,  which  can  be  either  named  or
unnamed.

Enumerations (enum) are explicitly-named tagged union types. At any given moment,
exactly one of the variants is present. Each variant has a unique name and can contain
zero or more fields, just like a  struct. Field access is only possible through pattern-
matching operations which ensure that the appropriate variant is present.

Both  structures  and  enumerations  can  be  defined  generically.  The  compiler
monomorphizes these definitions: Each unique combination of type parameters used in
the program produces a different type with its own memory layout. 

Closures are  anonymous types that implement one or more of the function-call traits
Fn,  FnMut,  and  FnOnce.  Each  closure  expression  produces  a  distinct  type  which
contains  all  of  its  captured  variables.  By  default,  these  variables  are  captured  by
reference, which prevents the closure object from leaving the activation record it was
defined in (cf. §2.2.4). The  move keyword changes this behavior to capture-by-value,
which  instead  transfers  ownership  of  the  captured  variables  to  the  closure  object.
Because these types are anonymous, they must be bound to a generic parameter in
order to be stored or passed from one function to another.

2.2.2 Traits

Generic programming in Rust relies on traits, which describe an interface that can be
implemented by multiple types. Traits themselves can be generic, by taking type or
lifetime parameters, and can be restricted to being implemented only by types that
otherwise meet certain conditions, described by type bounds. For most purposes, each
possible binding of parameters to a generic trait definition is treated as an independent
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trait. In particular, it is never possible to elide the parameters of a trait: they must
always be explicitly specified.

Traits  are  also  often  used  to  represent  a  typeclass  with  properties  the  compiler  is
unable to enforce.  When analyzing code that refers to one of  these traits,  different
situations call for different assumptions about the trait's implementation. In a safety
analysis, the general practice is to assume that the implementation may contain any
non-unsafe code  that  the  compiler  would  accept.  When  evaluating  program  logic,
however, the assumption is that the trait implementation is correct, i.e. that it satisfies
all of the defining properties of the corresponding typeclass.

Each trait defines a number of associated items that describe the shared interface. Most
of these items are function or method prototypes that describe the operations that a
type must support in order to implement the trait. These items can also be secondary
type definitions or constant values.  Each of  these items can be subject to arbitrary
bounds by the trait definition, but they can otherwise be freely chosen by any of the
trait's implementors.

Trait type parameters and associated types often get confused, and it can sometimes be
difficult to tell which is most appropriate for any given situation. In essence, a type
parameter is conceptually chosen by the caller and an associated type is conceptually
chosen by the implementation. By specifying something as an associated type, you are
asserting that it is uniquely determined by the combination of the trait, including its
generic parameters, and Self, the type that implements the trait.

The usual role of an associated type in a trait is to serve as the return type of a method:
Each trait implementation is free to choose a different return type for the method, as
long as it satisfies the bounds in the trait definition. Code that uses this method on a
generic type is then only allowed to perform operations that can be inferred by these
bounds, unless it further constrains the associated type.

There is a subtle difference between specifying a type bound on an associated type and
specifying it on the method that returns that type. Consider the following traits:

trait T1 {
    type Output: Condition;
    fn do_something(&self)->Self::Output;
}

trait T2 {
    type Output;
    fn do_something(&self)->Self::Output
        where Self::Output: Condition;
}

T1 requires that every implementation of the trait must specify a  Output type that
implements  the  Condition trait.  T2,  on  the  other  hand,  places  no  constraints  on
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Output.  Instead, it specifies that  do_something is only a valid operation if  Output
implements the Condition trait.

When reasoning about traits, it is important to realize that the Rust compiler always
treats the types that implement a trait as an open set: It assumes that there are always
some unknown types that also implement the trait. These types could be added to the
program at any time, and might not share any undeclared properties that the known
implementations may have in common. Thus, the compiler will not accept code that
relies on such undeclared commonalities.

2.2.3 Ownership and Lifetimes

Rust's memory model is based on a system of ownership semantics. "Ownership" in
Rust is the right to either destroy an object or to relocate it to another memory location.
With only a few exceptions, every object is owned either by a function's activation
record or by some other object which is transitively owned by an activation record.
Because each value has exactly one owner, it is structurally impossible to destroy any
object  multiple  times,  which  would  lead  to  a  double-free  error.  Also,  because
essentially every object is transitively owned by an activation record, memory leaks are
extremely rare.

Often, it is cumbersome or incorrect to give a function the rights attached to object
ownership. If an object is stored inside a vector, for example, it would need to first be
removed from the vector, which is a potentially expensive operation. To accommodate
this and similar cases, an activation record is allowed to provide temporary access to
any object  that  it  owns,  a  process  known as  “generating a  borrow.” The compiler
produces an internal identifier, a lifetime, which represents the region of the function
body in which the borrowed object remains valid.

Generating a borrow then produces one of two primitive types that are annotated with a
special kind of generic parameter, a lifetime annotation: a shared reference (&'a T) or
an exclusive  reference  (&'a mut  T).  Lifetime annotations  are denoted by  a  single
quote preceding the parameter name, which is customarily in lower case ('a).  It  is
important to understand that the seemingly concrete type  &'a str,  for example, is
really a generic type with a free parameter 'a and therefore represents a typeclass. The
value of this parameter is some concrete lifetime, attached to a particular activation
record.

Any compound type that contains one of these reference types must specify its lifetime
parameter explicitly. There is only one non-generic lifetime in Rust: 'static indicates
the borrowed value will remain valid until the program exits. All other lifetimes come
from  the  borrow-generation  process  described  above  and  cannot  be  named:  Each
invocation  of  a  function  conceptually  creates  a  new,  distinct,  set  of  lifetimes.  The
compound type, then, must take a lifetime annotation of its own as a generic parameter
in order to fill the reference's lifetime parameter.
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A special phase of the compiler, the borrow checker, rejects any program where a value
of an annotated type might exist outside its corresponding region of validity. Once this
phase is complete, all remaining references in the program have been proven correct
and there is no more need of the lifetime annotations. They are then discarded, and
have no further  effect.  In  particular,  neither  memory layout nor  code generation is
affected by the lifetime system.

This  model  does,  however,  impose  some  constraints  on  algorithm  design.  Some
algorithms, especially those which involve arbitrary graph structures, must be modified
in ways that could impact performance. The overall cost of these changes is usually a
small constant factor, with no change in the algorithm's asymptotic behavior.

2.2.4 Reference Types

Like references in garbage-collected languages, Rust references always point to a valid
target.  The  two  systems  differ  in  how  they  achieve  this  goal:  Garbage-collected
languages use a runtime system to delay the destruction of and object until some time
after the last reference to that object expires. Rust, on the other hand, lets an object's
owner fully control when it is moved or destroyed; the compiler uses static analysis to
ensure no reference to the object exists at that point.

The two reference types, &'a T and &'a mut T, differ in how the compiler computes
the  extent  of  the  lifetime  'a.  An exclusive  reference's  region  ends  as  soon  as  the
borrowed object is used in any way that does not pass through the reference. A shared
reference's region, on the other hand, only ends when the borrowed object is moved or
destroyed, or an exclusive borrow is generated for the same object.

As mutating operations generally require an exclusive reference, this forms a kind of
statically-enforced read-write lock: Code that holds an exclusive reference can safely
assume that no intermediate states will be observed by outside code; code that holds a
shared reference can safely assume that the object will not change while the reference
is held.

Some algorithms are too complicated to be fully analyzed by these static mechanisms.
Rust's  standard  library  provides  some  facilities  to  support  these  more  complicated
algorithms with runtime support. A brief discussion of these APIs will both elucidate
how the  lifetime system  works in  practice  and provide  an  introduction  to  some  of
Rust's common utilities.

The  shared  ownership  types,  Rc<T> and  Arc<T>,  behave  more  like  references  in
garbage-collected  languages,  and  are  used  where  there  isn't  a  clear  hierarchical
ownership  structure.  They  are  reference-counted  owning  pointers  that  will  only
destroy the contained T once the last reference to it is destroyed. The only difference
between them is that  Arc is thread-safe by virtue of using atomic operations on its
internal reference count, which may impose a performance penalty.
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An Rc<T> (or Arc<T>) can be readily used to obtain a shared reference to its contained
T,  thanks  to  its  Deref::deref method,  which  has  a  signature  of  fn<'a>(&'a
Rc<T>)->&'a T.2 This states that the output reference to  T is valid within the same
region 'a as the input reference to the Rc<T>. This intuitively makes sense: As long as
at least one copy of the  Rc<T> object exists, its internal reference count will remain
above zero and the contained T will not be destroyed.

Because this pattern of projecting a reference with one lifetime into another reference
of the same lifetime is so common, Rust lets you omit the annotations in this case:
deref's signature is more commonly written as  fn(&Rc<T>)->&T, which is entirely
equivalent to the form given above.

Obtaining an exclusive reference to the contained  T is  not  so straightforward.  The
Rc<T>::get_mut method has a signature of fn(&mut Rc<T>)->Option<&mut T>. It
returns an Option because creating an exclusive reference might not be possible: There
may be other Rc's pointing to the same allocation. If the internal count is one, however,
this is the only copy of the Rc<T>; it's safe to produce the exclusive reference.

To ensure that the returned reference will retain exclusive access, calling deref or any
similar method on the  Rc<T> must be blocked. This is accomplished by requiring an
exclusive reference as the input parameter: Though the exclusive reference  &'a mut
Rc<T> no longer exists after  get_mut returns, the return type is annotated with the
lifetime 'a.3 This informs the compiler that it should prevent the returned value from
existing outside the region  'a.  Because  there are no other  accesses to the original
Rc<T> within 'a, there is no possibility of concurrent access to its contained value.

2.2.5 Dynamic Dispatch and Runtime Type Introspection

By default, Rust uses static dispatch for accessing a trait's methods and other related
items. This requires the compiler to know the concrete type of the object being used,
which is not always possible. For traits that meet certain requirements, Rust defines a
special  type  known  as  a  trait  object,  which  can  represent  any  concrete  type  that
implements the trait. For a trait T, this is written as “dyn T”.

A trait object has an identical memory layout as the concrete type that it is abstracting.
As these various concrete types may have different sizes, trait objects are dynamically-
sized. This severely restricts how they can be used. In particular, a dynamically-sized
type (DST) can only exist behind a layer of indirection, such as a reference.4 Internally,
pointers to DSTs contain a second field that holds additional information about the
target type. In the case of trait objects, this second field contains the address of the
relevant vtable. By storing the vtable address inside the pointer, Rust avoids the need

2 T is a free parameter here, because the Deref trait is implemented for Rc<T>.

3 More specifically, it would appear when written in a fully-explicit form.

4 There is one exception: A DST may also be stored directly as the last field of a struct, in which case
the struct itself is dynamically-sized and must be behind a layer of indirection.
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to store this address inside the concrete type's layout: The cost of dynamic dispatch is
borne only by code that explicitly uses the feature.

In most cases, it is impossible to recover the concrete type that backs a trait object.
This introspection is only possible via the Any trait. The trait object dyn Any has two
methods  that  attempt  to  convert  references  back  into  a  concrete  type,
downcast_ref<T> and  downcast_mut<T>.  These  return  Option<&T> and
Option<&mut T>, respectively. If the backing type of the  dyn Any object is  T, they
return Some(...), otherwise they return None.

Due to a limitation in the implementation of Any, it is only implemented for types that
conform to a  'static bound. Every type in a Rust program is assigned a  TypeId at
compile time. Any compares T's id to its backing type's id and allows the conversion
only if they are equal. As soon as the borrow checker has verified that the program does
not  violate  any  lifetime  constraints,  the  lifetimes  are  discarded;  the  TypeIds  are
generated after this stage of compilation has finished. As such, two types that differ
only in their lifetime annotations will receive the same id. In order to maintain memory
soundness,  Any needs to be implemented for only one concrete type for each id. The
'static bound achieves this by requiring all of a type's embedded lifetime annotations
to be 'static.

Note that this doesn't require the backing objects themselves to last forever. This is a
common  misconception  among  newcomers  to  Rust.  Instead,  the  'static bound
prevents  the  object  from  referring  to  some  external  value  stored  on  the  stack.  A
lifetime bound on a type T only says that all values of type T must be destroyed within
the named region.

2.3 Compile-Time Programming

Rust has several mechanisms that work together at compile time to enable high-level
abstractions  to  produce  simplified  machine  code.  These  include  macros  for  syntax
manipulation,  bounds  for  expressing  relationships  between  types,  constant
expressions, and traditional program optimization.

Macros can expand to arbitrary code but operate purely at a syntax level. Each macro
invocation  must  be  entirely  self-contained:  There  is  no  mechanism  to  transfer
information between multiple macro calls. This leaves the compiler free to calculate
macro  results  in  any  order.  Macro  invocations  can  only  occur  at  defined  positions
within  the  Rust  grammar,  and  must  always  expand to  syntax  that  is  valid  in  that
position.  Rust  has  two ways to  specify macros,  macros  by  example and  procedural
macros.

Macros by example are defined via a template language which can be embedded into
any  Rust  source  file.  Each  definition  specifies  one  or  more  syntax  templates  and
corresponding replacements. Every macro variable in a template is annotated with a
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production  rule  from  the  main  Rust  grammar  and  may  only  appear  in  the  macro
expansion in a position where that production is valid.

In contrast, procedural macros are both more powerful and more cumbersome to write.
Procedural macros are written as ordinary Rust functions which consume and produce
syntax  tree  objects.  They  must  be  defined  in  a  separate  library,  which  is  then
dynamically linked into the Rust compiler itself.

Type bounds form a Turing-complete language for describing arbitrary relationships
between  types  (cf.  Appendix  A).  This  is  particularly  useful  for  keeping  track  of
statically-known properties of values as they are transferred between different code
modules. String is a good example of this: It maintains an invariant that its contents
are always UTF-8 encoded. Functions that interact with  Strings can then trust that
they have UTF-8 encoded data without performing their own validation, regardless of
any other code that the object may have passed through since the String object was
originally created (cf. §2.1.3).

A significant subset  of  Rust  can be  evaluated in  a  const context,  including loops,
conditionals,  and function calls.  These  const expressions are evaluated at  compile
time. In addition to being precomputed, these can also be used in certain places where a
runtime expression is forbidden, such as the length of statically-allocated arrays. This
system is still under active development; Rust 1.515, for example, adds a limited ability
for constants to be used as generic parameters, alongside types and lifetimes.

Finally,  Rust  relies heavily on  traditional  compiler  optimization  strategies.  Generic
functions and structure definitions are monomorphized, and a separate implementation
is emitted for each set of type parameters that appears in the program. Any constant
value derived from these parameters will be known to the optimizer. If these are used
in a conditional expression, the optimizer can remove the unreachable branch. The non-
aliasing rules for references can also be exploited by the optimizer: Multiple reads from
the same reference will always produce the same result, for example; it can be cached
in a register instead of performing a second read from memory.

5 Released March 2021
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3 Tylisp: A Type-System Embedded Programming Language
The arguments to relational operators have more complicated preconditions than those
of typical Rust functions. In particular, relations and relational tuples are primarily
characterized by their relational header, which is a set of columns. Relational operators
may impose conditions on the union or intersection of these sets. It is imperative, then,
to be able to model these more complicated relationships within Rust's type system.

As Rust's type system is Turing complete (see Appendix A), it can be used to describe
any computable relationship between two types. Its syntax, however, is optimized to
express simple relationships between types. During the development of Memquery, it
quickly became obvious that a more ergonomic means of expressing complicated type
relationships was required, a domain-specific language.

Tylisp was developed to meet this need. It allows Rust types to be treated as ordinary
values,  and every  Tylisp  expression  evaluates to  a  Rust  type.  Lisp's  homoiconicity
makes it a natural choice for the design: If Tylisp expressions are also Rust types, then
the evaluation engine can be written natively inside Rust's type system.

3.1 Heterogeneous Lists

The primary data structure in any Lisp-derived language is the heterogeneous list [12],
and Tylisp is no exception. These are composed of cons cells, which have two fields of
differing  types,  and  the  empty  list.  Unlike  its  counterparts  in  other  Lisp-derived
languages, HCons directly contains both the head and tail of the list. This requires the
compiler to be able to statically determine the types of all the list's constituent items.
The  compiler  will  lay  out  the  entire  list  as  a  single,  contiguous  block  of  memory
without any pointer indirections.

Tylisp defines a number of facilities to work with these lists in ordinary Rust code.  The
sexpr! and  sexpr_val! macros provide a shorthand for constructing list types and
values, the  List and  Take traits allow manipulation of individual elements within a
list, and the ListOf and ListOfRefs traits produce iterators over a list's elements.

3.1.1 sexpr! Macro

The sexpr! macro expands to a Rust type composed of a tree of cons cells.  Table 3.1
demonstrates the syntax. In the examples, A, B, and C can be any Rust type name.
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Table 3.1: Tylisp S-Expression Syntax (types)

Lisp Syntax Tylisp Syntax Rust Type

() sexpr!{} HNil

(A) sexpr!{A} HCons<A, HNil>

(A B) sexpr!{A, B} HCons<A,
   HCons<B, HNil>>

(A B C) sexpr!{A, B, C} HCons<A,
   HCons<B,
      HCons<C, HNil>>>

(A B . C) sexpr!{A, B; C} HCons<A, HCons<B, C>>

((A B) C) sexpr!{{A, B}, C} HCons<

   HCons<A,
      HCons<B, HNil>>,
   HCons<C, HNil>>

('A, 'B) sexpr!{@A, @B} HCons<Quote<A>,
   HCons<Quote<B>, HNil>>

3.1.2 sexpr_val! Macro

The sexpr_val! macro expands to a runtime value composed of a tree of cons cells.
Table  3.2 shows  several  examples,  where  a,  b,  and  c may  be  arbitrary  Rust
expressions.  Note  that  its  syntax  differs  slightly  from that  of  sexpr!:  There  is  no
shorthand  for  creating  Quote values  (§3.2.2),  and  nested  lists  must  be  explicitly
marked with an  @ sigil. The macro parser needs this sigil to disambiguate between a
Rust block used as an expression and a nested list.
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Table 3.2: S-Expression Syntax (runtime values)

Lisp Syntax Tylisp Syntax Macro Expansion

() sexpr_val!{} HNil

(a) sexpr_val!{a} HCons {
   head: a,
   tail: HNil
}

(a b) sexpr_val!{a, b} HCons {
   head: a,
   tail: HCons {
      head: b,
      tail: HNil
   }
}

(a b c) sexpr_val!{a, b, c} HCons {
   head: a,
   tail: HCons {
      head: b,
      tail: HCons {
         head: c,
         tail: HNil
      }
   }
}

(a b . c) sexpr_val!{a, b; c} HCons {
   head: a,
   tail: HCons {
      head: b,
      tail; c
   }
}

((a b) c) sexpr_val!{@{a, b}, c} HCons {
   head: HCons {
      head: a,
      tail: HCons {
         head: b,
         tail: HNil
      }
   },
   tail: HCons {
      head: c,
      tail: HNil
   }
}
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3.1.3 List Trait

List indicates that Self is a heterogeneous list of finite length.

Prerequisites

Self is either the empty list HNil or a cons cell whose tail is a List.

List is  implemented  for  all  types  which  meet  these  prerequisites.  Users  may  not
implement List for any custom types.

Associated Constants

LEN is a usize integer which contaings the number of elements in the list

Associated Types

Head is the type of the first element in the list.

Tail is a List that contains all elements other than the head.

Methods

split(Self)->(Self::Head, Self::Tail)

Removes the first item from the list, and returns both pieces

head(&Self)->&Self::Head

Returns a reference to the first element of the list

tail(&Self)->&Self::Tail

Returns a reference to the tail list

3.1.4 Take Trait

Take<I> indicates that Self is an HList with an element at location I. It is primarily
intended for internal Memquery use.

Prerequisites

Self must be a  List of sufficient length.  Take is automatically implemented for all
such lists.

Type Parameters

I is a locator type, either There<...> or Here. The Missing locator type is forbidden, as
it represents an item that is not present.
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Associated Types

Taken is the type of the element at location I, and Remainder is a list of all remaining
elements.

Table 3.3: Sample Take Implementations

Self I Take<I>::Taken Take<I>::Remainder

sexpr!{A,B,C} Here A sexpr!{B,C}

sexpr!{A,B,C} There<Here> B sexpr!{A,C}

sexpr!{A,B,C} There<There<Here>> C sexpr!{B,C}

sexpr!{A} There<Here> not implemented

sexpr!{} Here not implemented

Methods

fn take(Self)->(Self::Taken, Self::Remainder)

Removes the requested element from Self.

3.1.5 ListOf Trait

ListOf<X> transforms a heterogeneous list into an iterator of values of type X

Prerequisites

Self must  be  a  List,  and  every  element  of  Self must  implement  Into<X>.
ListOf<X> is  automatically implemented for all such lists.

Trait Parameters

X is the type of elements yielded by the list_of_iter method.

Associated Types

ListIter is  the  output  type  of  the  list_of_iter method.  Must  implement
Iterator<Item=X>.

Methods

list_of_iter(Self)->Self::ListIter

Consumes Self and produces an Iterator over its elements

3.1.6 ListOfRefs Trait

ListOfRefs<X> produces an iterator which yields shared references to values of type
X.
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Prerequisites

Self must  be  a  List,  and  every  element  of  Self must  implement  AsRef<X>.
ListOfRefs<X> is automatically implemented for all such lists.

Trait Parameters

X is the type of elements that will be yielded from the iter method.

Methods

iter(&Self)->impl Iterator<Item = &X>

Returns a Rust iterator over the elements of the list.

head_ref(&Self)->Option<&X>

Returns a reference to the head element of the list. Returns  None if the list is
empty.

tail_ref(&self)->&dyn ListOfRefs<X>

Returns a reference to the tail of the list

3.1.7 HCons Type

HCons<H,T> is a cons cell used for constructing heterogeneous lists.

Type Parameters

H is the type of the first element in the list, the head.

T is the type of the remaining list elements, usually HNil or another cons cell.
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Implemented Traits

Table 3.4: Implemented Traits for HCons<H,T>

Trait Bounds Associated Types

List T: List Head = H
Tail = T

ListOf<X> H: Into<X>
T: ListOf<X>

ListOfRefs<X> H: AsRef<X>
T: ListOfRefs<X>

Copy H: Copy
T: Copy

Clone H: Clone
T: Clone

Take<I> See §3.1.4

See also §4.4-4.6

3.1.8 HNil Type

HNil is a unit type that represents the empty list.

Implemented Traits

Table 3.5: Implemented Traits for HNil

Trait Associated Types

List Head = HNil
Tail = HNil

ListOf<X>

ListOfRefs<X>
Copy

Clone

See also §4.4-4.6

3.1.9 Locator Types

Tylisp defines 3 locator types to indicate a position within a heterogeneous list:

• Here is a unit type that represents the head position of an HList.
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• There<I> is a unit type that represents a position in the tail of an HList, where I
is a locator type.

• Missing is a unit type that indicates there is no valid position.

3.2 Evaluation Model

All Tylisp expressions are purely functional: They are systematically unable to alter
their argument types in any way, and can only produce a new output type. Every type T
that represents a Tylisp expression implements the  Eval trait, where  Eval::Result
contains the result of evaluating T. Any type that has a direct implementation of Eval
is considered a Tylisp atom:

• Many types are Tylisp literals, which evaluate to themselves.

• The Quote<X> type evaluates to the type X.

• Users  are  free  to  implement  Eval on  their  own  types  to  describe  how they
should be interpreted by Tylisp.

Tylisp's  computational  power  lies  in  its  implementation  of  Eval for  lists.  When
evaluating a list, Tylisp first evaluates the head element, which must produce a type F
that implements the Call trait. This specifies the calling convention that will be used
to process the remaining elements of the list. At present, there are two conventions
defined: Fun and Syn.

The simplest of these is Syn.  This indicates that F operates directly on the syntax of its
arguments, similar to a Lisp macro. The list arguments are not altered, and the function
call evaluates to SynCall::Result.

The Fun calling convention indicates that  F is an ordinary function. Each element in
the tail of the original list is evaluated, and a list of these results is provided as an
argument to F's  FunCall implementation.  The entire function call then evaluates to
FunCall::Result.

3.2.1 literal! Macro

The  literal! macro declares that a type is a Tylisp literal. It emits an appropriate
implementation of the Eval and LispId (§3.5.1) traits.

3.2.2 Quote Type

Quote<X> is a zero-sized type that evaluates to X.  It is most commonly produced by
using @ notation inside an sexpr! (§3.1.1) call.
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Implemented Traits

Table 3.6: Implemented Traits for Quote<X>

Trait Associated Types

Eval Result = X

3.2.3 Eval Trait

Eval indicates that Self is a well-formed Tylisp expression

Associated Types

Result is the output type produced by evaluating Self. Note that this is unrelated to
the Result enum defined by Rust's standard library.

3.2.4 Call Trait

Call describes how a Self behaves when it appears in a function-call position within a
Tylisp expression.

Prerequisites

None. Usually implemented via the defun! macro

Associated Types

Conv is a marker type that specifies the calling convention to use.  Must be either Fun
or Syn.

3.2.5 FunCall Trait

FunCall<A> indicates that  Self is an ordinary Tylisp function which can produce a
result from the provided arguments A.

Prerequisites

Self must implement Call<Conv=Fun>.  Usually implemented via the defun! macro.

Trait Parameters

A is a  List of the function's arguments, which have already been evaluated once by
Tylisp.

Associated Types

Result is  the output  type from executing  Self.  Note  that  this  is  unrelated to  the
Result enum defined by Rust's standard library.
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3.2.6 SynCall Trait

SynCall<A> indicates that Self is a syntax function which can produce a result from
the provided list A.

Prerequisites

Self must implement Call<Conv=Syn>.  Manually implemented.

Trait Parameters

A is the a list of the function's arguments, exactly as they appear in the original Tylisp
expression.

Associated Types

Result is the output type from the function call.  Note that this is unrelated to the
Result enum defined by Rust's standard library.

3.3 Boolean Logic and Conditionals

Tylisp  defines  two  literals,  True and  False,  which  represent  conditions  known  at
compile time. These should not be confused with the Rust  literals true and  false,
which are both constants of the type bool. Tylisp's boolean functions all support short-
circuiting:  Arguments  that  are  not  necessary  to  determine  the  result  are  never
evaluated, and do not need to be well-formed.

In order to make interfacing with Rust code easier, Tylisp defines the traits Pass and
Fail,  which  are  implemented  for  any  Tylisp  expressions  that  evaluate  to  True or
False, respectively.

3.3.1 True and False Types

True is a Tylisp literal that represents a Boolean truth value.

False is a Tylisp literal that represents a Boolean false value.

3.3.2 If

If is  a  Tylisp  syntax  function  that  chooses  between  two  expressions  based  on  a
predicate value.

Syntax

{If, Predicate, Consequent, Alternate}

Evaluates Predicate, and returns the evaluation of either Consequent or Alternate.
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Preconditions

Predicate must  evaluate  to  either  True or  False.  If  Predicate evaluates  to  True,
Consequent must  be  evaluable.  If  Predicate  evaluates  to  False,  Alternate must  be
evaluable. Produces a compile error if these conditions are violated.

Example

{If, {EmptyP, @{A,B}},
     @{},
     {Head, @{A,B}}

 A⟹ A

3.3.3 Cond

Cond is a Tylisp syntax function that chooses between several expression based on a
sequence of predicates.

Syntax

{Cond, {P1, C1}, {P2, C2}, ..., {Pn, Cn}}

Evaluates  each  of  the  predicates  P1,  P2,  ...  Pn in  order  until  one  of  them  Pi

evaluates to True. Returns the evaluation of Ci.

Preconditions

P1 ...  Pi-1 must evaluate to False, Pi must evaluate to True, and Ci must be evaluable.
Produces a compile error if these conditions are violated.

Example

{Cond, {False, @A},
       {False, @B},
       {True, @C},
       {False, @D}}

 C⟹ A

3.3.4 And

And is a Tylisp syntax function that returns True when all of its arguments evaluate to
True.

Syntax

{And, P1, P2, ..., Pn}

Evaluates  each  of  the  predicates  P1,  P2,  ...  Pn in  order  until  one  of  them  Pi

evaluates to False. Returns True if no False value was found.
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Preconditions

P1 ...  Pi-1 must evaluate to True and Pi must evaluate to False if it exists. Produces a
compile error if these conditions are violated.

Examples

{And}  True⟹ A
{And, False}  False⟹ A
{And, True, True, {EmptyP, @{}}}  True⟹ A
{And, True, False, @B}  False⟹ A
{And, True, @B, False}  ⟹ A compile error

3.3.5 Or

Or is a Tylisp syntax function that returns False when all of its arguments evaluate to
False.

Syntax

{Or, P1, P2, ..., Pn}

Evaluates  each  of  the  predicates  P1,  P2,  ...  Pn in  order  until  one  of  them  Pi

evaluates to True. Returns False if no True value was found.

Preconditions

P1 ...  Pi-1 must evaluate to False and Pi must evaluate to True if it exists. Produces a
compile error if these conditions are violated.

Examples

{Or}  False⟹ A
{Or, False}  False⟹ A
{Or, False, False, {EmptyP, @{}}}  True⟹ A
{Or, True, False, @A}  True⟹ A
{Or, False, @A, True}  ⟹ A compile error

3.3.6 Not

Not is an ordinary Tylisp function that inverts the Boolean value of its argument.

Syntax

{Not, Predicate}

Preconditions

Predicate must evaluate to either True or False. Otherwise, produces a compile error.

Example

{Not, {EmptyP, @{}}}  False⟹ A
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3.3.7 Invert

Invert is an ordinary Tylisp function that produces an inverted predicate function.

Syntax

{Invert, Predicate}

Preconditions

Predicate must evaluate to a Tylisp function of one argument which returns  True or
False

Example

{Filter, {Invert, EmptyP}, @{{A}, {}, {B,C}}}
 sexpr!{{A}, {B, C}}⟹ A

3.3.8 Pass Trait

Pass indicates  that  Self is  a  Tylisp  expression  that  evaluates  to  True.  Pass is
automatically implemented for all such expression types.

Example Usage

fn at_least_one_empty<A:List, B:List>(a:A, b:B) where
    sexpr!{Or, {EmptyP, @A}, {EmptyP, @B}}: Pass
{ ... }

3.3.9 Fail Trait

Fail indicates  that  Self is  a  Tylisp  expression  that  evaluates  to  False.  Fail is
automatically implemented for all such expression types.

Example Usage

fn not_both_empty<A:List, B:List>(a:A, b:B) where
    sexpr!{And, {EmptyP, @A}, {EmptyP, @B}}: Fail
{ ... }

3.4 List Manipulation

Tylisp defines a number of functions for manipulating heterogeneous lists.

3.4.1 EmptyP

EmptyP is an ordinary Tylisp function that returns  True if its argument is the empty
list.
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Syntax

{EmptyP, L}

Preconditions

L must evaluate to a type which implements List. Produces a compile error otherwise.

Examples

{EmptyP, @{}}  True⟹ A
{EmptyP, @{A}}  False⟹ A

3.4.2 Head

Head is an ordinary Tylisp function that returns the head field a cons cell.

Syntax

{Head, L}

Preconditions

L must evaluate to a cons cell. Produces a compile error otherwise.

Examples

{Head, @{}}  ⟹ A compile error
{Head, @{A}}  A⟹ A
{Head, @{A, B}}  A⟹ A
{Head, @{A; B}}  A⟹ A

3.4.3 Tail

Tail is an ordinary Tylisp function that returns the tail field of a cons cell.

Syntax

{Tail, L}

Preconditions

L must evaluate to a cons cell. Produces a compile error otherwise.

Examples

{Tail, @{}}  ⟹ A compile error
{Tail, @{A}}  sexpr!{}⟹ A
{Tail, @{A, B}}  sexpr!{B}⟹ A
{Tail, @{A; B}}  B⟹ A

3.4.4 Cons

Cons is an ordinary Tylisp function that constructs a cons cell from its arguments.
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Syntax

{Cons, Head, Tail}

Preconditions

Head and Tail must be evaluable.

Examples

{Cons, @A, @B}  sexpr!{A; B}⟹ A
{Cons, @A, @{B,C}}  sexpr!{A, B, C}⟹ A
{Cons, @{A, B}, @C}  sexpr!{{A, B}; C}⟹ A
{Tail, @{A, B}, @{C, D}}  sexpr!{{A, B}, C, D}⟹ A

3.4.5 Map

Map is an ordinary Tylisp function which applies a Tylisp function to every element of a
list.

Syntax

{Map, Func, List}

Preconditions

List must evaluate to a type which implements List.

For every element x in List, the expression {Func, @x} must be evaluable. Produces a
compile error if this is violated.

Example

{Map, EmptyP, @{{A,B}, {}, {C}}}
 sexpr!{False, True, False}⟹ A

3.4.6 Filter

Filter is an ordinary Tylisp function which selects elements from a list based on a
predicate function

Syntax

{Filter, Func, List}

Preconditions

List must evaluate to a type which implements List.

For every element x in List, the expression {Func, @x} must evaluate to either True or
False. Produces a compile error if this is violated.
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Example

{Filter, {Partial, Contains, @{A, B}},
         @{C, B, A}}

 sexpr!{C, A}⟹ A

3.4.7 Collate

Collate is an ordinary Tylisp function which divides a list's elements into two lists
based on a predicate function.

Syntax

{Collate, Func, List}

Preconditions

List must evaluate to a type which implements List.

For every element x in List, the expression {Func, @x} must evaluate to either True or
False. Produces a compile error if this is violated.

Example

{Filter, {Partial, Contains, @{A, B}},
         @{C, B, A}}

 sexpr!{{C, A}, {B}}⟹ A

3.4.8 CollatedBy Trait

CollatedBy<Expr> indicates that Self is a heterogeneous list that can be filtered by
the Tylisp expression Expr.

Trait Parameters

Expr is a Tylisp expression that evaluates to a Tylisp function

Prerequisites

The  Tylisp  expression  {Collate,  Expr,  @Self} must  be  evaluable.
CollatedBy<Expr> is  automatically  implemented  for  all  lists  that  satisfy  this
prerequisite.

Associated Types

Passed is a List of the elements for which Expr evaluates to True

Failed is a List of the elements for which Expr evaluates to False

Methods

collate(Self)->(Self::Passed, Self::Failed)

Divides Self into two lists according to the predicate Expr.
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CollatedBy::<sexpr!{Partial, Is, @A}>
    ::collate(sexpr_val!{A(1), B(2), A(3), C(4)})
⟹ A
(sexpr_val!{A(1), A(3)}, sexpr_val!{B(2), C(4)})

3.4.9 BuildList

BuildList is an ordinary Tylisp function which returns a list of its arguments. This
differs from simply writing a quoted list in that the arguments are evaluated before the
list is built.

Syntax

{BuildList, @A, @B, ... }  sexpr!{A, B, ... }⟹ A

Preconditions

Every argument must be evaluable.

3.4.10 Reverse

Reverse is an ordinary Tylisp function which reverses the order of elements in a list.

Syntax

{Reverse, L}

Preconditions

L must evaluate to a type which implements List

Example

{Reverse, @{A, B, C}}  sexpr!{C, B, A}⟹ A

3.4.11 Any

Any is an ordinary Tylisp function which returns True if any elements in a list satisfy
the given predicate function, or False if all elements fail the predicate function. It is
unrelated to the Any trait defined in Rust's standard library.

Syntax

{Any, Predicate, List}

Preconditions

List must evaluate to a type that implements List.

Predicate must evaluate to a Tylisp function which takes a single argument.
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Given  List elements  x1,  x2,  ...  xi ...  xn,  where  {Predicate, @xi} evaluates  to  True,
{Predicate, @xk} must evaluate to False for all k < i. The remaining elements xi+1 ... xn

are irrelevant and do not need to be valid arguments to Predicate.

If there is no i for which {Predicate, @xi} evaluates to True,  {Predicate, @xk} must
evaluate to False for all k ≤ n.

Example

{Any, {Partial, Is, @A}, @{C, B, A, D}}  True⟹ A
{Any, {Partial, Is, @A}, @{C, B, D}}  False⟹ A

3.4.12 All

All is an ordinary Tylisp function which returns True if all elements in a list satisfy
the given predicate function, or False if any element fails the predicate function.

Syntax

{All, Predicate, List}

Preconditions

List must evaluate to a type that implements List.

Predicate must evaluate to a Tylisp function which takes a single argument.

Given  List elements  x1,  x2,  ...  xi ...  xn,  where  {Predicate, @xi} evaluates to  False,
{Predicate, @xk} must evaluate to True for all  k<i. The remaining elements xi+1 ...  xn

are irrelevant and do not need to be valid arguments to Predicate.

If there is no i for which {Predicate, @xi} evaluates to False, {Predicate, @xk} must
evaluate to True for all k ≤ n.

Example

{All, EmptyP, @{{}, {}, {A, B}}}  False⟹ A

3.4.13 FindPred

FindPred is  an ordinary Tylisp function that returns a  locator type (§3.1.9) which
indicates the position of the first element in a list that satisfies the given predicate.

Syntax

{FindPred, Predicate, List}

Preconditions

List must evaluate to a type which implements List.
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Given  List elements  x1,  x2,  ...  xi ...  xn,  where  {Predicate,  xi} evaluates  to  True,
{Predicate, xk} must evaluate to False for all k<i.

Examples

{FindPred, EmptyP, @{{A}, {}, {}}}  There<Here>⟹ A
{FindPred, {Invert, EmptyP}, @{{}, {}, {}}}  Missing⟹ A

3.4.14 Concat

Concat is an ordinary Tylisp function that concatenates two lists.

Syntax

{Concat, A, B}

Preconditions

A and B must both evaluate to types which implement List

Example

{Concat, @{A, B}, @{C, D}}  sexpr!{A,B,C,D}⟹ A

3.5 Type Comparison and Set Algebra

Part of Rust's forward compatibility strategy is to allow developers to add a new trait
implementation  to  an  existing type  without  breaking  existing  code.  To  ensure  this
remains possible in most cases, there is no mechanism to bound implementations on
the absence of a trait.  This also extends to comparing two types for equality:  It  is
possible to enforce that two generic parameters refer to the same type, but impossible
to  enforce  that  they  refer  to  different  types.  This  introduces  a  difficulty  for
implementing  set  algebra  within  the  type  system:  When  performing  a  set  insert
operation, for example, it is necessary to verify that the type of the new element is not
already present in the set.

One way to get around this limitation is to operate only on a universe U of types that is
completely known in advance. Using this scheme, testing that a type is not in a set S is
equivalent to testing that it is in the set U\S. The typenum crate uses this principle to
implement types that represent the domain of nonzero integers6 [13]. Each integer is
represented  as  a  heterogeneous  list  of  True and  False types,  which  directly
correspond to its binary representation.

In order to support set operations on arbitrary types, Tylisp requires that all types in a
set implement LispId, which holds a unique ID encoded as one of typenum's numeric
types. To facilitate the creation of these IDs, the uuid_new_v4! macro will generate a
random UUID and encode it as 128-bit typenum integer.

6 The typenum crate  also implements representations of  other numeric  domains,  but  they are  not
relevant to this project.
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3.5.1 LispId Trait

The  LispId trait  associates  a  unique  integer  with  Self,  which  allows  Tylisp  to
perform operations that depend on whether or not Self is equal to some other type.

Prerequisites

Id must be a typenum integer type. No two LispId implementations may specify the
same Id. This is not mechanically enforced. All implementations provided by Tylisp or
Memquery are version 4 (random data) UUIDs [14].

Associated Types

Id is a type-level integer that uniquely identifies Self.

3.5.2 uuid_new_v4! Macro

The  uuid_new_v4! macro evaluates  to  a  typenum integer  type which represents  a
newly-generated version 4 UUID.

Syntax

type Id = uuid_new_v4!{};

3.5.3 Is

Is is an ordinary Tylisp function which compares its arguments for type equality. This
function  cannot  be  used  to  compare  lists,  as  they  do  not  implement  LispId;  use
DifferP for that instead.

Syntax

{Is, A, B}

Returns True if A and B are the same type

Preconditions

A and B must evaluate to types which implement the trait LispId.

3.5.4 DifferP

DifferP is an ordinary Tylisp function which compares two lists for equality.

Syntax

{DifferP, A, B}

Returns True if A and B are the same length and every element in A is the same
type as the corresponding element in B.
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Preconditions

A and B must both evaluate to types which implement List and every element in both
A and B must implement LispId.

Examples

{DifferP, @{}, @{}}  False⟹ A
{DifferP, @{A}, @{B}}  True⟹ A
{DifferP, @{A}, @{A, B}}  True⟹ A

3.5.5 Contains

Contains is  an ordinary  Tylisp  function that  checks for  the  presence  of  a  specific
element inside a list.

Syntax

{Contains, List, Item}

Returns True if Item is an element of List

Preconditions

List must evaluate to a type which implements List.

Item must evaluate to a type which implements LispId.

Every element of List must implement LispId.

Examples

{Contains, @{A, B, C}, @A}  True⟹ A
{Contains, @{A, B, C}, @D}  False⟹ A

3.5.6 SupersetP

SupersetP is an ordinary Tylisp function that checks whether the elements of one list
are a superset of the elements of another list.

Syntax

{SupersetP, A, B}

Returns True if all elements of B are present in A.

Preconditions

A and B must both evaluate to types which implement List.  All elements of A and B
must implement LispId.
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Examples

{SupersetP, @{A, B, C}, @{C, A}}  True⟹ A
{SupersetP, @{A, B, C}, @{}}  True⟹ A
{SupersetP, @{A, B, A}, @{B, B}}  True⟹ A
{SupersetP, @{A, B], @{B, A}}  True⟹ A
{SupersetP, @{A, B], @{A, C}}  False⟹ A

3.5.7 SubsetP

SubsetP is an ordinary Tylisp function that checks whether the elements of one list are
a subset of the elements in another.

Syntax

{SubsetP, A, B}

Returns  True if all elements of  A are present in  B. Equivalent to  {SupersetP,
B, A}

Preconditions

Both A and  B must evaluate to types which implement  List. All elements of both  A
and B must implement LispId.

3.5.8 Without

Without is an ordinary Tylisp function that removes all instances of a type from a list.

Syntax

{Without, Item, List}

Returns a list that contains all elements of List which are not of type Item.

Preconditions

List must evaluate to a type which implements List.

Item must evaluate to a type which implements LispId.

Every element of List must implement LispId.

Example

{Without, @A, @{A, B, A, C}}  sexpr!{B, C}⟹ A

3.5.9 Find

Find is an ordinary Tylisp function that locates the first instance of a type in a list
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Syntax

{Find, Needle, Haystack}

Returns  a  locator  type  (§3.1.9)  which  indicates  the  position  of  Needle within
Haystack.

Preconditions

Haystack must  evaluate  to  a  type  which  implements  List and  every  element  of
Haystack must implement LispId.

Needle must evaluate to a type which implements LispId.

Examples

{Find, @A, @{A, B, A C}}  Here⟹ A
{Find, @A, @{B, A, C}}  There<Here>⟹ A
{Find, @A, @{B, C}}  Missing⟹ A

3.5.10 Union

Union is an ordinary Tylisp function that computes the union of two sets.

Syntax

{Union, A, B}

Prepends the elements of A which are not present in B to B. Note that if either A
or B contains internally duplicated elements, those elements may be duplicated in
the result.

Preconditions

Both A and B must evaluate to types which implement List. Every element of both A
and B must implement TypeId.

Examples

{Union, @{A, B}, @{B, C}}  sexpr!{A, B, C}⟹ A
{Union, @{A, C}, @{B, D}}  sexpr!{A, C, B, D}⟹ A
{Union, @{C, A}, @{A, B, C}}  sexpr!{A, B, C}⟹ A
{Union, @{A}, @{A, B, A}}  sexpr!{A, B, A}⟹ A
{Union, @{B, B}, @{A, C}}  sexpr!{B, B, A, C}⟹ A
{Union, @{A, A}, @{A, C}}  sexpr!{A, C}⟹ A

3.5.11 Intersect

Intersect is an ordinary Tylisp function which computes the intersection of two sets.
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Syntax

{Intersect, A, B}

Returns a list of the elements of B that are also elements of A. Note that if B
contains any duplicate elements, they will be duplicated in the result.

Preconditions

Both A and B must evaluate to types which implement List. Every element of both A
and B must implement LispId.

Examples

{Intersect, @{A, B}, @{B, C}}  sexpr!{B}⟹ A
{Intersect, @{A, B}, @{B, C, A}}  sexpr!{B, A}⟹ A
{Intersect, @{A, B}, @{A, C, A}}  sexpr!{A, A}⟹ A
{Intersect, @{A, B}, @{C, D}}  sexpr!{}⟹ A

3.5.12 Remove

Remove is  an ordinary Tylisp function which calculates the difference between two
sets.

Syntax

{Remove, A, B}

Returns a list containing all elements of B that are not elements of A. Note that if
B contains duplicate elements, then they will also be duplicated in the result

Preconditions

Both A and B must evaluate to types which implement List. Every element of both A
and B must implement LispId.

Examples

{Remove, @{A, B}, @{B, C}}  sexpr!{C}⟹ A
{Remove, @{A, B}, @{B, C, A}}  sexpr!{C}⟹ A
{Remove, @{B, C}, @{A, C, A}}  sexpr!{A, A}⟹ A
{Remove, @{A, B}, @{C, D}}  sexpr!{C, D}⟹ A

3.5.13 SetInsert

SetInsert is an ordinary Tylisp function which inserts an element into a set.

Syntax

{SetInsert, Item, List}

Prepends Item to List iff List contains no elements of type Item.
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Preconditions

List must  evaluate  to  a  type  which  implements  List,  every  element  of  List must
implement LispId.

Item must evaluate to a type which implements LispId.

Examples

{SetInsert, @A, @{C, A, B}}  sexpr!{C, A, B}⟹ A
{SetInsert, @A, @{B, C}}  sexpr!{A, B, C}⟹ A

3.6 Defining Functions

One notable absence from Tylisp is any kind of variable-binding form, such as let or
lambda.  There are a few function combinators, such as Invert (§3.3.7) and Partial,
but most Tylisp functions are defined via the defun! Rust macro, outside of any Tylisp
expression.

3.6.1 defun! macro

Defines a Rust type that acts as an ordinary Tylisp function.

Syntax

defun!{ Name {
    (generics) {args} => expr;
    (generics) {args} => expr;
    ...
}}

Name is  the  function  to  be  defined.  Each  arm  defines  a  FunCall (§3.2.5)
implementation for the given generic types and argument list; Rust will use pattern
matching to choose the appropriate arm at each callsite. Each expr is a Tylisp function
call which descibes the function result.

Example: Recursion

A function to turn a list into a list of 2-tuples can be defined like this:

defun!{ Pairs {
    (A, B, Tail) {{A, B; Tail}} => {Cons, @(A, B),
                                          {Pairs, @Tail}};
    ()           {{}          } => {Ret, @{}};
}}

Each of the two arms define a function that accepts a single argument.  The first arm
defines the behavior for lists of at least two elements, A and B. It packages them into a
2-tuple, and makes a  recursive call  to process the rest  of  the list.  The second arm
describes the base case, where the argument is the empty list.
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If a user attempts to pass a list with an odd length to this function, such as {X, Y, Z},
it will produce a compile error due to a missing implementation for length-1 lists.

{Pairs, @{X, Y, Z, W}}  sexpr!{(X, Y), (Z, W)}⟹ A
{Pairs, @{X, Y, Z}}  ⟹ A Compile error

The argument list can be composed of arbitrary types, not just ones named as generic
parameters:

defun!{ Key {
    (K,V) { BTreeMap<K,V> } => {Ret, @K};
    (K,V) { HashMap<K,V>  } => {Ret, @K};
    (T)   { Vec<T>        } => {Ret, @usize};
}}

Example: Generic Bounds

It is also possible to specify Rust type bounds for the generic parameters. For example,
this function accepts one argument, which must be a reference type:

defun!{ Target {
    (Ptr: Deref) {Ptr} => {Ret, @Ptr::Target};
}}

{Target, @Rc<usize>}  usize⟹ A

3.6.2 Ret

Ret is an ordinary Tylisp function that returns its argument.

Syntax

{Ret, @A}  A⟹ A

Preconditions

The argument must be evaluable.

3.6.3 Partial

Partial is a Tylisp syntax function that implements partial application of a function

Syntax

{Partial, F, A1, A2, ..., An}

Constructs a new Tylisp function F2 such that the expression {F2, B1, B2, ... Bm}
is equivalent to {F, A1, A2, ..., An, B1, B2, ..., Bm}

Example

{Map, {Partial, SetInsert, @A}, @{{}, {A, B}, {B, C}}}
 sexpr!{{A}, {A, B}, {A, B, C}}⟹ A
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4 Memquery: Relational Algebra in Rust

4.1 Overview

Memquery  is  a  framework  for  managing  a  program's  internal  data,  based  on  the
principles of relational algebra. It  is designed to reduce the coupling between three
distinct programming roles:

1. Application programmers who are primarily concerned with the correctness of a
single feature or use case of a program. 

2. Architects who  are  primarily  concerned  with  the  overall  performance  and
maintainability of a program.

3. Library  authors who  are  primarily  concerned  with  inventing  new  data
organization schemes that can be used in multiple programs.

4.1.1 Data Model

The smallest  unit  of  data  in  Memquery  is  the  column  value,  which  stores  a  single
atomic value. These are represented by single-field structures which implement the Col
trait (§4.3.3). The particular set of column types available are unique to each program,
according to the needs of its data model.

Individual facts are modeled as a set of column values that are related to each other.
These facts are represented in Memquery by types that implement the Record trait
(§4.5.1).  The set of column types contained in a record is known as its  header.  All
column types also implement  Record, as do tuples of records7. It is also possible for
programs to define custom Record types.

A collection of records with uniform type is known as a relation, represented by the
Relation trait (§4.2.1). This trait provides facilities to query the contained records,
and the related traits Insert (§4.9.4) and Delete (§4.9.5) provide a common interface
for modifying the contents of relations.

Query results are always Record types that borrow their column data from the relation
being  queried,  so  that  the  column references  may outlive  the  returned  record.  The
ExternalRecord<'a> trait (§4.5.2) represents this property; it provides methods to
access longer-lived references than are available from the Record trait.

7 A tuple only implements Record if its component records have disjoint headers.
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4.1.2 For Application Programmers

Application programmers need to store data into and retrieve data from the relations
that  have  been defined  by  the  architect.  Because  all  Memquery  relations  present  a
uniform interface for these tasks, the programmer does not need to pay much attention
to the particular relation type.

Querying a Relation

To illustrate a typical query, consider a relation vendors that contains, among others,
the columns VendorId and VendorName. To print a list of the vendors in alphabetical
order:

for (VendorId(id), VendorName(name))
 in vendors.by_ref()
           .order_by::<sexpr!{Asc<VendorName>}>()
           .iter_as()
{
    println!("{:4} {}", id, name);
}

This makes use of three different methods from the Relation trait:

1. by_ref() prevents the vendors relation from being consumed by the query

2. order_by::<Asc<VendorName>>() requests  the  records  to  be  presented  in
ascending order by name

3. iter_as() will iterate over the query results. It has a polymorphic return type,
which Rust infers based on the pattern (VendorId(id), VendorName(name))

Joining Relations

Suppose  there is  another  relation,  suppliers,  which contains  (PartId, VendorId)
pairs to represent the vendors capable of supplying various parts. We can extend the
example above to only list vendors that supply a particular part (#42) like this:

for (VendorId(id), VendorName(name))
 in vendors.by_ref()
           .join(suppliers.by_ref())
           .where_eq(PartId(42))
           .order_by::<sexpr!{Asc<VendorName>}>()
           .iter_as()
{
    println!("{:4} {}", id, name);
}

Here, there are two additional method calls in the chain of query adapters:

1. join(suppliers.by_ref()) constructs the natural join of the two relations

2. where_eq(PartId(42)) selects only those records that pertain to part #42
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Inserting Records

The  Insert (§4.9.4) trait defines two methods for inserting records into a relation:
insert() adds a single record and  insert_multi() adds several. These operations
are atomic: If any of the insertions fail, no changes are made to the relation.

vendors.insert(
    (VendorId(42),
     VendorName(String::from("Acme, Inc."))
    )
).unwrap();

suppliers.insert_multi(vec![
    (VendorId(42), PartId(3)),
    (VendorId(42), PartId(5)),
    (VendorId(37), PartId(5))
]).unwrap();

Removing Records

If a relation type implements the Delete trait (§4.9.5), it supports removing records.
The Relation::truncate method will delete all records from these relations. Calling
truncate on a query adapter will only delete the records that are visible through the
adapter,  and leave  all  other  records  unaffected.  For  example,  to  delete  all  supplier
records for vendor #42:

vendors.by_mut()
       .where_eq(VendorId(42))
       .truncate();
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Updating Records

There is no way to modify records in-place. Instead, they need to be removed, modified,
and then re-inserted. To make this robust against additional columns being added to
the relation, the associated type  Relation::Cols can be used as a temporary record
type that contains all of the relation's columns.

#[derive(Copy,Clone,Ord,PartialOrd,Eq,PartialEq)]
pub enum OrderStatus {
    Approved,
    Sent,
    Received,
}

col!{ pub PartId: u32 }
col!{ pub Quantity: u32 }
col!{ pub Status: OrderStatus }

type Orders = Vec<(PartId, Quantity, OrderStatus)>;

fn send_approved(orders: &mut Orders) {
    use OrderStatus::*;

    // Find orders that have been approved
    let mut approved = orders.by_mut()
                             .where_eq(Status(Approved));

    // Store a copy of the approved orders
    let mut updates: Vec<Orders::Cols> =
        approved.iter_as().collect();

    // Make necessary modifications
    for order in &mut updates {
        **(order.col_mut::<Status>()) = Sent;
    }

    // Remove the old records
    approved.truncate();

    // Insert the updated records
    orders.insert_multi(updates).unwrap();
}

Transactions

Sometimes, it is necessary to perform multiple fallible operations atomically, such that
no  changes  occur  unless  they  all  succeed.  Inserts,  for  example,  can  fail  due  to
constraint violations. Memquery provides a transaction system to handle this situation
(§4.9); the Insert and Delete traits provide the associated functions insert_op and
delete_op to generate revertable operations which can be applied in a transaction.
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Suppose the programmer wishes to add a new vendor and the parts that vendor can
supply  to  our  example  database,  but  only  if  all  of  the  records  can  be  inserted
successfully. One way to write this is:

type Vendors = ...;
type Suppliers = ...;

// Add new vendor
let vendor_txn = Transaction::start(vendors)
    .apply(Vendors::insert_op(
        (VendorId(vendor_id), VendorName(name))
    );

// Add supplier records
let supplier_txn = Transaction::start(suppliers)
    .apply_multi( vendor_part_ids.map(
        |part_id| Suppliers::insert_op(
            (VendorId(vendor_id), PartId(part_id))
        )
    ));

match (vendor_txn.inspect(), supplier_txn.inspect()) {
    (Some(_), Some(_)) => {
        // All inserts were successful
        vendor_txn.commit().unwrap();
        supplier_txn.commit().unwrap();
    }
    _ => {
        // Something went wrong
        vendor_txn.revert();
        supplier_txn.revert();
    }
}

4.1.3 For Architects

The architect's primary job in a Memquery-based program is to define the schema that
the  application  programmers  will  use.  This  consists  of  declaring  the  columns  and
relations that the program will use.

Declaring Columns

Columns are declared via the col! macro (§4.3.2). Each column definition consists of
an optional visibility specifier, the column name, and a Rust type that describes the
domain of values that can be stored within the column. Each invocation of the  col!
macro defines  a  new type  which  represents  a  single  value  from  that  column.   For
example, this defines two columns,  PartId which stores an unsigned 32-bit integer
and PartName which stores a text string:

col!{ pub PartId: u32 }
col!{ pub PartName: String }
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Because each column is represented by a type, column names can be reused as long as
each of the duplicate names is defined in a separate module.  This can be useful to
organize  a  columns  into  related  groups.  In  the  example  below,  part::Id and
project::Id are completely distinct columns; application code that deals only with
parts can import the definitions from the part module to use the shorter name.

pub mod part {
    col!{ pub Id: u32 }
    col!{ pub Name: String }
}

pub mod project {
    col!{ pub Id: u32 }
    col!{ pub Name: String }
}

Declaring Relations

The most basic relation types provided by Memquery are Vec<T> and Option<T> from
Rust's standard library. Vec<T> stores zero or more records of type T, and Option<T>
stores zero or one record of type T. The header for each relation is implicitly defined by
the header of the records which it contains. In many cases, the record type stored in a
relation can be simply a tuple of column types. The most convenient way to define a
schema is to define a singleton structure which contains all of the schema's relations as
fields. A database that contains one relation with the columns PartId and PartName
can be defined like this:

col!{ pub PartId: u32 }
col!{ pub PartName: String }

#[derive(Default)]
pub struct DatabaseA {
    parts: Vec<(PartId, PartName)>
}

This definition has some drawbacks: Every query will  need to perform a sequential
scan of the parts relation, and there can be multiple records with the same PartId.
Correcting these deficiencies requires adding an index to the parts relation.

In  Memquery,  indices  are  relations  that  are  composed  of  subrelations.  A
BTreeIndex<K,R> (§4.8.1),  for example,  contains several  instances of  the relation
type  R,  one  for  each  unique  value  of  the  column  K.  This  definition,  for  example,
supports all of the same queries as the definition above:

#[derive(Default)]
pub struct DatabaseB {
    parts: BTreeIndex<PartId,
               Option<(PartId, PartName)>>
}
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Here,  the  original  relation  Vec<...> has  been  replaced  with  Option<...>.  This  only
allows a single PartName to be stored for each unique PartId; any attempt to insert a
duplicate id will be rejected. Also, instead of a sequential scan, the  BTreeIndex will
perform a direct lookup for any query that specifies an explicit  PartId value. These
benefits come with some extra costs for other operations, however: Instead of a single
continuous  memory  allocation,  the  records  will  be  stored  in  various  BTree  nodes
scattered  throughout  the  heap,  potentially  harming  performance  when  iterating
through all of the records.

Queries that specify a part's name instead of its id will still require a sequential scan of
all records.  RedundantIndex<K2,K1,R> (§4.8.2) can be used to provide a secondary
index on the PartName column:

#[derive(Default)
pub struct DatabaseC {
    parts: RedundantIndex<PartName, PartId,
               BTreeIndex<PartId,
                   Option<(PartId, PartName)>>>
}

Unlike  BTreeIndex,  RedundantIndex contains only a single instance of its declared
subrelation R, in this case BTreeIndex<...>. Alongside this, it stores a mapping from
K2 (PartName) to K1 (PartId) values. When a query specifies an explicit part name, the
corresponding ids  are  retrieved from this  mapping and used to  retrieve  the  correct
records from the  BTreeIndex. Inserting new records into this structure, however, is
roughly twice as expensive as inserting them into  DatabaseB: Each record must be
inserted into two separate index structures instead of just one.

As the parts relation in all three of these examples contains the same set of columns,
most application code that works with one version will also work correctly with any of
the others. If a new column is added to a relation, most query code will continue to
work correctly, but any insertion code will need to provide a value for the new column.

4.1.4 For Library Authors

Library authors may wish to define new relation types that integrate into the rest of the
Memquery ecosystem. This is probably the most complicated Memquery programming
task.  The  complexity  of  this  task  is,  in  part,  how  Memquery  is  able  to  present  a
simplified, but still performant, interface to architects and application programmers.

All  of  Memquery's  machinery  for  executing  queries  is  contained  in  a  blanket
implmentation of the  Queryable<'a, Q> trait (§4.2.5). Library authors need to be
familiar with how  Queryable works in order to make their extension types interact
with  the  rest  of  the  Memquery  ecosystem.  Also,  unlike  application  programmers,
library authors will usually  call Queryable::query() directly instead of constructing
adapters when they need to retrieve records from a relation.
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Every query request is represented by a type that implements the QueryRequest trait
(§4.6.1), which specifies a set of selection filters and a presentation order for records.
Given  a  query  request  q of  type  Q,  Queryable<'a,  Q>::query(&'a self,  q)
performs a three-step process:

1. Obtain a query plan P by executing the Tylisp expression
{<Self as RelationImpl>::Planner, @&'a Self, @Q}

2. Construct an instance p of type P by calling 
<P as QueryPlanImpl>::prepare(&'a self, q)

3. Obtain an iterator of result records by calling
<P as IntoIterator>::into_iter(p)

Queryable<'a,  Q> is  automatically  implemented for  all  types  where  this  process
passes the type checker and produces an iterator that yields items of type  <Self as
QueryOutput<'a>>::QueryRow.  The  primary  task  of  a  library  author,  then,  is  to
provide  implementations  of  these  traits,  so  that  their  extension  type  implements
Queryable for every possible QueryRequest type Q.

Defining a Query Adapter

To illustrate the process, consider a relation adapter that discards records that contain
a duplicated value in a named column. The first step is to define a structure to represent
the new adapter:

struct Unique<C,R>{
    rel: R,
    col: PhantomData<C>
}

impl<C:Col+Ord, R:RelationImpl> Unique<C,R> {
    fn new(rel:R)->Self {
        Unique { rel, col: PhantomData }
    }
}

The  RelationImpl and  QueryOutput traits (§4.2.3,4) describe the properties of the
relation. In this case, it has the same header as its argument relation  R, and will be
returning the same record type. Because it delegates all queries to R, it also provides
the same set of indexed (fast) columns.  As it will be inspecting the value of the column
C, it must be present in R.
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impl<C:Col,R> RelationImpl for Unique<C,R> where
    R: RelationImpl,
    R::Cols: HasCol<C>
{
    type Cols = R::Cols;
    type FastCols = R::FastCols;
    type Planner = UniquePlanner;
}

impl<'a,C:Col,R> QueryOutput<'a> for Unique<C,R> where
    R:QueryOutput<'a, Cols=Self::Cols>,
    Self:RelationImpl
{
    type QueryRow = R::QueryRow;
}

We also need to define a query plan that can iterate over the results. This will require a
set to keep track of the C values that we've already seen and the iterator over R's query
results:

struct UniquePlan<'a,C:Col,Out>
{
    seen: BTreeSet<&'a C>,
    iter: Box<dyn Iterator<Item=Out> + 'a>
}

impl<'a,C:Col+Ord,Out> Iterator for UniquePlan<'a,C,Out> where
    Out: ExternalRecord<'a>,
    Out::Cols: HasCol<C>
{
    type Item = Out;
    fn next(&mut self)->Option<Self::Item> {
        for result in &mut self.iter {
            if self.seen.insert(result.ext_col_ref()) {
                return Some(result)
            }
        }
        None
    }
}

To associate  this  plan  with  Unique,  we need  to  define the  UniquePlanner Tylisp
function.  Because  all  queries  will  use  the  same  plan,  it  can  simply  return  the
appropriate UniquePlan type:

defun!{UniquePlanner {
    ('a, C:Col, R:QueryOutput<'a>, Q) { &'a Unique<C,R>, Q }
    => { Ret, @UniquePlan<'a, C, R::QueryRow> };
}}

The  QueryPlanImpl trait  (§4.2.6)  then  describes  how to  construct  a  UniquePlan
instance for a given relation and query:
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impl<'a,C:Col+Ord,R,Q> QueryPlanImpl<'a,Unique<C,R>,Q>
for UniquePlan<'a,C,R::QueryRow> where
    Q: QueryRequest + 'a,
    R: Queryable<'a, Q>,
{
    fn prepare(r: &'a Unique<C,R>, q:Q)->Self {
        UniquePlan {
            seen: BTreeSet::new(),
            iter: Box::new(r.rel.query(q))
        }
    }
}

Finally, we need to define how to iterate over all of Unique's records by implementing
IntoIterator for &Unique:

impl<'a,R,C> IntoIterator for &'a Unique<C,R> where
    R: Relation<'a>,
    C: Col + Ord,
    R::Cols: HasCol<C>,
    &'a R: IntoIterator<Item = R::QueryRow>
{
    type IntoIter = UniquePlan<'a,C,R::QueryRow>;
    type Item = R::QueryRow;
    fn into_iter(self)->Self::IntoIter {
        UniquePlan {
            seen: BTreeSet::new(),
            iter: Box::new(
                      <&R as IntoIterator>::into_iter(&self.rel)
                  )
        }
    }
}

This completes the implementation of Unique. It can contain any Memquery relation,
and will use that relation's query planner to generate candidate results.  Unique can
also be used as a source relation for any other query adapter:

col!{A:usize}
col!{B:usize}

let rel = vec![(A(1), B(1)), (A(2), B(2)), (A(1), B(3))];
Unique::<A,_>::new(rel)
              .iter_as()
              .collect::<Vec<B>>();

 vec![B(1), B(2)]⟹ A

Defining a Storage Relation

In addition to custom operations, a libraray author may want to implement a new way
to  store  records.  This  must  support  inserting  and  deleting  records  in  addition  to
queries.  To  illustrate  this,  consider  a  relation  that  contains  both  small,  frequently
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accessed  columns  and  large,  infrequently  accessed  columns.  It  may  be  possible  to
improve the cache efficiency of queries that access the small columns by storing them
in a separate allocation from the large columns. As before, start by defining a structure
which will hold all of the relation's data:

struct SplitVec<L,R> {
    left: Vec<L>,
    right: Vec<R>
}

As this structure has no way to speed up particular queries, there is no need to define a
custom query planner. Instead, the sequential-scan FallbackPlanner (§4.2.8) can be
used instead:

impl<L,R> RelationImpl for SplitVec<L,R> where
    L: Record,
    R: Record,
    (L,R): Record
{
    type Cols = <(L,R) as Record>::Cols;
    type FastCols = sexpr!{};
    type Planner = FallbackPlanner;
}

For the FallbackPlanner to work, QueryOutput and IntoIterator must be defined
to iterate over all the records in the relation. In this case, the output records are pairs of
references:

impl<'a,L,R> QueryOutput<'a> for SplitVec<L,R> where
    Self: RelationImpl + 'a,
    (&'a L, &'a R): ExternalRecord<'a, Cols=Self::Cols>
{
    type QueryRow = (&'a L, &'a R);
}

impl<'a,L,R> IntoIterator for &'a SplitVec<L,R> {
    type Item = (&'a L, &'a R);
    type IntoIter = Zip<std::slice::Iter<'a, L>,
                        std::slice::Iter<'a, R>>;
    fn into_iter(self)->Self::IntoIter {
        self.left.iter().zip(self.right.iter())
    }
}

70



At this point,  SplitVec instances support all query requests, but there is no way to
either construct an instance or insert new rows. Storage relations should implement
the Default trait to construct empty instances:

impl<L,R> Default for SplitVec<L,R> {
    fn default()->Self {
        SplitVec {
            left: vec![],
            right: vec![]
        }
    }
}

Next,  define  a  RevertableOp (§4.9.1)  for  inserting  an  individual  record  and  a
corresponding  UndoLog (§4.9.2) that can roll back the change when a transaction is
aborted. In this case, the insert pushes the records onto to the existing vectors; the
undo log discards the last item from each vector:

struct InsertPair<L,R>(L,R);

impl<L,R> RevertableOp<SplitVec<L,R>> for InsertPair<L,R> {
    type Err = std::convert::Infallible;
    type Log = UndoInsert;
    fn apply(self, rel: &mut SplitVec<L,R>)->Result<Self::Log, 
Self::Err> {
        rel.left.push(self.0);
        rel.right.push(self.1);
        Ok(UndoInsert)
    }
}

struct UndoInsert;

impl<L,R> UndoLog<SplitVec<L,R>> for UndoInsert {
    fn revert(self, rel: &mut SplitVec<L,R>) {
        rel.left.pop();
        rel.right.pop();
    }
}

The  Insert trait (§4.9.4) describes how to construct this operation for an arbitrary
record. Here, it  uses the  FromRecord trait (§4.5.5) to split  the inserted record into
constituent parts:
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impl<L,R,H> Insert<H> for SplitVec<L,R> where
    SplitVec<L,R>: RelationImpl,
    H: Header,
    L: FromRecord<H>,
    L::Remainder: Header + Record<Cols = L::Remainder>,
    R: FromRecord<L::Remainder>
{
    type Op = InsertPair<L,R>;
    type Remainder = <R as FromRecord<L::Remainder>>::Remainder;
    fn insert_op<Rec>(rec: Rec)->(Self::Op, Self::Remainder)
    where Rec: Record<Cols=H>
    {
        let (l, remainder) = L::from_rec(rec);
        let (r, remainder) = R::from_rec(remainder);
        (InsertPair(l,r), remainder)
    }
}

Deletion  works  similarly  to  insertion:  The  Delete trait  (§4.9.5)  describes  how  to
generate a  RevertableOp that will  delete the specified records.  Instead of a single
record, however,  Delete takes a  QueryFilter (§4.6.2); all  records that match the
filter should be removed. While  Insert's undo log didn't contain any data, the undo
log  for  Delete contains  the  removed  records  so  that  they  can  be  restored  if  the
transaction is aborted.

impl<L,R,Q> Delete<Q> for SplitVec<L,R>
where
    Q:QueryFilter,
    for<'a> (&'a L, &'a R):Record
{
    type Op = DeleteWhere<Q>;

    fn delete_op(q:Q)->Self::Op {
        DeleteWhere(q)
    }
}

pub struct DeleteWhere<Q>(Q);

(Continued)
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impl<L,R,Q> RevertableOp<SplitVec<L,R>> for DeleteWhere<Q>
where
    for<'a> (&'a L, &'a R): Record,
    Q: QueryFilter,
{
    type Err = std::convert::Infallible;
    type Log = Removed<L,R>;

    fn apply(self, rel: &mut SplitVec<L,R>)
    ->Result<Self::Log, Self::Err> {
        let mut removed: Vec<(usize, L, R)> = vec![];
        for i in (0..rel.left.len()).rev() {
            if self.0.test_record(&(&rel.left[i], &rel.right[i])) 
{
                removed.push(
                    (i, rel.left.remove(i), rel.right.remove(i))
                );
            }
        }
        Ok(Removed(removed))
    }
}

pub struct Removed<L,R>(Vec<(usize, L, R)>);

impl<L,R> UndoLog<SplitVec<L,R>> for Removed<L,R> {
    fn revert(mut self, rel: &mut SplitVec<L,R>) {
        for (i,l,r) in self.0.into_iter().rev() {
            rel.left.insert(i,l);
            rel.right.insert(i,r);
        }
    }
}

4.2 Relations

Relational  algebra  is  primarily  concerned with  manipulating collections  of  records,
known as  relations. It defines a number of operators that both consume and produce
these relations. A database is defined as a set of relations that contain all of its stored
information. Conceptually, the process of retrieving particular information from the
database involves using relational operators to construct a new relation, a view, which
contains only the desired data, and then iterating over all the records in the view.

Memquery follows this model quite closely. It defines a number of storage types, with
each making different tradeoffs between storage efficiency, modification performance,
and query performance. It additionally defines a number of view adapters. Each of these
adapters represents one of Codd's relational operators. These storage and adapter types
all implement Relation<'a>, which is the main interface between Memquery and user
code.  It  is  also  possible  for  library  authors  to  define  additional  relations  that  will
integrate seamlessly into the Memquery system.
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4.2.1 Relation Trait

Relation<'a> is  the  main  entry  point  for  user  code  to  interact  with  relations.  It
provides methods to iterate over all records as well as methods to construct restricted
views into the relation. Many relations also support mutation via  the Insert (§4.9.4)
and Delete (§4.9.5) traits.

Application  programmers  should  be  familiar  with  the  methods  this  trait  provides.
Library authors can implement Relation for additional types by providing appropriate
RelationImpl, QueryOutput, and IntoIterator implementations as specified in the
prerequisites (cf. §4.1.4).

Prerequisites

• Self must implement RelationImpl and QueryOutput<'a>

• &'a Self must implement IntoIterator. The resulting iterator must visit all
the  records  contained  in  Self,  and  they  must  be  of  the  type
Self::QueryOutput::QueryRow.

Relation is automatically implemented for all types that meet these prerequisites.

Trait Parameters

'a: The lifetime during which returned results will remain valid.

Notable Implementors

• Vec<T> : Unordered storage of zero or more records of type T

• Option<T>: Storage of zero or one record of type T

• BTreeIndex<K,T>:  Storage  for  zero  or  more  records  of  type  T,  indexed  by
column K (§4.8.1)

• RedundantIndex<K2,K1,Rel>: A secondary index on column K2 of the records
in Rel (§4.8.2)

• View Adapters: Views into a relation, as described in §4.7
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Methods

iter_as<O>(&'a Self)->impl Iterator<Item=O>

Projects  each  record  in  Self onto  the  type  O.  O must  implement
FromExternalRecord<'a> (§4.5.7), and produces a compile error if the columns
in O are not a subset of the columns in Self.

col!{ProjectId: usize}
col!{QtyCommitted: usize}

let rel = vec![
    (ProjectId(1), QtyCommitted(3)),
    (ProjectId(2), QtyCommitted(5)),
    (ProjectId(3), QtyCommitted(7)),
];

let mut total = 0;
for &QtyCommitted(qty) in rel.iter_as() {
    total += qty;
}
total

 15⟹ A

truncate(&mut Self)->Result<(), impl Error>

Atomically deletes all records in Self. Produces a compile error if Self does not
implement  Delete (§4.9.5). If any of the records cannot be deleted, no records
are removed and Result::Err(...) is returned.

Truncate  can  be  used  in  combination  with  where_eq to  remove  a  subset  of
records:

col!{ProjectId: usize}
col!{QtyCommitted: usize}

let mut rel = vec![
    (ProjectId(1), QtyCommitted(3)),
    (ProjectId(2), QtyCommitted(5)),
    (ProjectId(3), QtyCommitted(7)),
];

assert!(rel.by_mut().where_eq(ProjectId(2)).truncate().is_ok());
rel

 vec![⟹ A
    (ProjectId(1), QtyCommitted(3)),
    (ProjectId(3), QtyCommitted(7)),
];
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by_ref(&Self)->RelProxy<&Self>

Transforms a shared reference to Self into an object that implements Relation.
This is primarily used to construct a view without transferring ownership of Self
to the view.

by_mut(&mut Self)->RelProxy<&mut Self>

Transforms  an  exclusive  reference  to  Self into  an  object  that  implements
Relation. If  Self implements  Insert or  Delete (§4.9.5), the returned object
also implements them. This allows the construction of views that can modify the
original relation.

project<H>(Self)->ProjectedRel<Self,H>

Constructs  a  projection  view (§4.7.3)  of  Self that  only  allows  access  to  the
columns specified in  H,  which must be a  Header (§4.4.1).  Produces a compile
error if H is not a subset of Self::RelationImpl::Cols.

where_eq<C>(Self, C)->FilterRel<Self, Exact<C>>

Constructs a  filtered view (§4.7.2)  of  Self that  contains those records which
match  the  provided  column  value  C.  Produces  a  compile  error  if  any  of  the
following conditions are not met:

• C must implement ColProxy (§4.3.4)
• C::For must implement PartialEq
• Self::RelationImpl::Cols must contain C::For

col!{ProjectId: usize}
col!{QtyCommitted: usize}

let rel = vec![
    (ProjectId(1), QtyCommitted(3)),
    (ProjectId(2), QtyCommitted(7)),
    (ProjectId(3), QtyCommitted(5)),
];

rel.where_eq(ProjectId(2))
   .iter_as::<QtyCommitted>()
   .collect::<Vec<_>>()

 vec![ QtyCommitted(7) ]⟹ A
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where_in<C,R>(Self, R)->FilterRel<Self, ColRange<R>>

Constructs a filtered view (§4.7.2) of Self that contains those records which fall
within the specified range  R.  Produces a compile error if  any of the following
conditions are not met:

• R must implement RangeBounds<C>
• C must implement ColProxy (§4.3.4)
• C::For must implement Ord
• Self::RelationImpl::Cols must contain C::For

col!{ProjectId: usize}
col!{QtyCommitted: usize}

let rel = vec![
    (ProjectId(1), QtyCommitted(3)),
    (ProjectId(2), QtyCommitted(7)),
    (ProjectId(3), QtyCommitted(5)),
];

rel.where_in( QtyCommitted(5) .. )
   .iter_as::<ProjectId>()
   .collect::<Vec<_>>()

 vec![ ProjectId(2), ProjectId(3) ]⟹ A

order_by<K>(Self, K)->OrderedRel<Self, K>

Constructs a sorted view (§4.7.4) of  Self that will produce results in the order
specified by K, which must implement SortKey (§4.6.3).

col!{ProjectId: usize}
col!{QtyCommitted: usize}

let rel = vec![
    (ProjectId(1), QtyCommitted(3)),
    (ProjectId(2), QtyCommitted(7)),
    (ProjectId(3), QtyCommitted(5)),
];

rel.order_by::<sexpr!{Desc<QtyCommitted>}>()
   .iter_as::<ProjectId>()
   .collect::<Vec<_>>()

 vec![ ProjectId(2), ProjectId(1), ProjectId(3) ]⟹ A
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join<R>(Self, R) -> PeerJoin<Self,R>

Constructs a peer join view (§4.7.6) between  Self and  R.  Produces a compile
error unless all of the following conditions are met:

• R implements RelationImpl

• The intersection between Self's header and R's header contains only one
column, C

• C implements the Eq and Col traits

col!{ VendorId: usize }
col!{ VendorName: &'static str }
col!{ PartId: usize }

let parts = vec![
    (PartId(1), VendorId(1)),
    (PartId(2), VendorId(1)),
    (PartId(3), VendorId(2)),
]

let vendors = vec![
    (VendorId(1), VendorName("Acme, Inc.")),
    (VendorId(2), VendorName("FrobozzCo Intl."))
];

parts.join(vendors)
     .iter_as::<(PartId, VendorName)>()
     .collect::<Vec<_>>()

 vec![⟹ A
    (PartId(1), VendorName("Acme, Inc.")),
    (PartId(2), VendorName("Acme, Inc.")),
    (PartId(3), VendorName("FrobozzCo Intl.")),
]
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subjoin<C>(Self) -> SubordinateJoin<Self, C>

Constucts a subordinate join view (§4.7.5) on the column C. Produces a compile
error unless the following conditions are met:

• C implements Col
• C::Inner implements RelationImpl
• The headers of Self and C::Inner are disjoint

col!{ PartId: usize }
col!{ ProjectId: usize }
col!{ Parts: Vec<PartId> }

let projects = vec![
    (ProjectId(1), Parts(vec![])),
    (ProjectId(2), Parts(vec![PartId(1), PartId(2)])),
    (ProjectId(3), Parts(vec![PartId(3)])),
];

projects.subjoin::<Parts>()
        .iter_as::<(ProjectId, PartId)>()
        .collect::<Vec<_>>()

 vec![⟹ A
    (ProjectId(2), PartId(1)),
    (ProjectId(2), PartId(2)),
    (ProjectId(3), PartId(3)),
]

4.2.2 Implementing Relations

The most critical part of defining a new relation type is specifying how it will go about
serving any particular  query.  Figure  4.1 shows an overview of  the types  and traits
involved in specifying a new relation type Rel. In addition to defining the columns and
record type that the relation holds, it is necessary to define one or more query plan
types, Plan, that are responsible for executing queries against the relation. The Tylisp
function  RelationImpl::Planner is responsible for choosing which of these query
plans should be used for any given QueryRequest (§4.6.1) Req.

Memquery  provides  FallbackPlanner,  a  generic  query  planner  that  will  produce
correct results for all queries. It uses a sequential-scan approach, and only requires a
correct implementation of IntoIterator for &Rel. This fallback planner can be either
used directly or as a last-resort planner to serve queries that the relation has not been
specifically written to handle. It also provides two query plan implementations that are
generic  over  all  Relations:  FallbackPlan will  perform  a  sequential  scan,  and
PostSortPlan will properly sort unordered results.
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Figure 4.1: Relation and related traits (abridged)

4.2.3 RelationImpl Trait

RelationImpl indicates that Self is a type that should be treated as a relation. This
trait serves as the entry point for Memquery to discover all necessary related types.

RelationImpl is mostly an implementation detail for the Relation trait. Application
programmers  need only  be  familiar  with  the  columns  stored in  any given  relation,
represented in the Cols associated type.

Architects should additionally be familiar with the query plan and FastCols that each
relation type uses, as these have a direct effect on program performance. Replacing one
relation type with another that has the same header should not affect the correctness of
query code.8

Library authors will need to correctly implement RelationImpl in order to integrate
with the rest of the Memquery system. This involves implementing several traits on a
variety of related types; see §4.1.4 for an overview of the entire process.

Prerequisites

None. Manually implemented.

Associated Types

• Cols: A Header which lists the columns contained in the relation's records.

8 To be a completely transparent replacement, the new relation type should have compatible Insert
(§4.9.4) and Delete (§4.9.5) implementations as well.
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• FastCols:  A  Header which  indicates  the  columns  that  the  relation  can
efficiently filter on. This is used solely as a hint for query planner, such as the
join planner (§4.7.6).

• Planner:  A  Tylisp  function  that  inspects  a  QueryRequest and  returns  a
QueryPlan capable of fulfilling the request.

4.2.4 QueryOutput Trait

QueryOutput<'a> specifies the record type that will be returned from queries of Self.
It  cannot  be  merged  into  RelationImpl because  of  the  presence  of  the  lifetime
parameter 'a. The records returned from a query will include references into Self, and
so must be generic over  'a.  On the other hand,   the relational header of  Self,  for
example,  must  be  the  same  regardless  of  whether  or  not  Self is  currently  being
borrowed.

QueryOutput is primarily relevant to library authors that wish to define a relation type
that composes with other, generic, relation types.

Application programmers should not rely on the particular QueryRow type specified by
any relation, and instead use Relation::iter_as() or Record::project_into() to
retrieve  the  column  values  required  for  any  given  computation.  This  leaves  the
architect free to replace the relation type with one that includes additional columns or
uses a different record format.

Prerequisites

Self must implement RelationImpl.

Trait Parameters

'a: The lifetime during which returned results must remain valid.

Associated Types

QueryRow: The type of record produced by queries performed on &'a Self. This type
must  implement  ExternalRecord<'a> and  QueryRow::Cols must  be  identical  to
Self::RelationImpl::Cols.

4.2.5 Queryable Trait

Queryable<'a, Req> is the main entry point for evaluating a query. It provides the
query method which will iterate over matching records in the order requested.

All  relation  types  should  implement  Queryable<'a,  Q> for  every  type  Q which
implements  QueryRequest.  Instead  of  implementing  Queryable directly,  library
authors  must  ensure  that  RelationImpl::Planner always  returns  a  compatible
QueryPlan (§4.2.7) type, such as FallbackPlan (§4.2.9).
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Application  programmers  should  prefer  constructing  view  adapters  (§4.7)  via  the
Relation trait (§4.2.1) to calling  query() directly. For more advanced queries, this
may not be possible. In this case, the programmer will need to become familiar with
Memquery's  query  specification  system  (§4.6)  in  order  to  provide  an  appropriate
parameter to query().

Prerequisites

Self must implement both RelationImpl and QueryOutput<'a>. The type returned
from calling Self::Planner must implement QueryPlan<'a, Self, Req>.

Queryable is  automatically  implemented for  all  relation  types  which  satisfy  these
prerequisites. Properly implemented relations should implement  Queryable<'a, Q>
for  any  type  Q which  implements  QueryRequest,  but  this  is  not  enforced  by  the
compiler.

Trait Parameters

• 'a:  The  lifetime  during  which  Self is  borrowed  for  the  query.  This  must
include all regions in which one of the produced records exists.

• Req: A QueryRequest (§4.6.1) that specifies which records should be included
in the query result, and the order in which they should be produced.

Associated Types

Plan:  The type returned by  RelationImpl::Planner for this  request.  Implements
QueryPlan<'a, Self, Req>.

Methods

query(&'a Self, Req)-><Self::Plan as IntoIterator>::IntoIter

Returns  an  Iterator over  the  query  results.  All  of  the  returned  records
implement ExternalRecord<'a, Cols=Self::Cols>.

col!{A: usize}
col!{B: usize}

let rel = vec![(A(1), B(5)), (A(2), B(3)), (A(3), B(7))];
let mut result: Vec<(A,B)> = vec![];
for rec in rel.query( BlankRequest.set_order::<Desc<B>>() ) {
    result.push(rec.project());
}
result

 vec![ (A(3), B(7)), (A(1), B(5)), (A(1), B(5)) ]⟹ A
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4.2.6 QueryPlanImpl Trait

QueryPlanImpl<'a,Rel,Req> indicates that Self is a concrete query plan to retrieve
matching  records  from  Rel.  This  trait  provides  a  constructor,  prepare.  The  query
results should be provided by a suitable IntoIterator implementation.

The  QueryPlanImpl trait is only relevant to library authors, who must implement it
for any custom query plan. Code that interacts with other query plans should bound on
the QueryPlan trait instead, which ensures that the plan can be executed after it has
been constructed.

Prerequisites

None. Manually implemented.

Trait Parameters

• 'a: The lifetime during which the query results will remain valid.

• Rel: The relation type being queried. Must implement Relation<'a> (§4.2.1)

• Req:  A  specification  of  the  records  to  be  retrieved.  Must  implement
QueryRequest (§4.6.1)

Notable Implementors

FallbackPlanner (§4.2.8)  is  capable  of  executing  any  query  request  against  any
relation.

Associated Functions

prepare(&'a Rel, Req)->Self

Create an instance of Self to retrieve records from Rel.

4.2.7 QueryPlan Trait

QueryPlan<'a,Rel,Req> indicates  that  Self implements  all  traits  necessary  for
executing the query Req against the relation Rel.

The  QueryPlan trait  is  only  relevant  to  library  authors.  Instead  of  implementing
QueryPlan directly,  library  authors  must  implement  QueryPlanImpl and
IntoIterator for their custom query plan types. If these two implementations agree,
Memquery will automatically implement the QueryPlan trait.
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Prerequisites

Self must  implement  both  QueryPlanImpl<'a,Rel,Req> and  IntoIterator.  The
items  yielded  from  the  iterator  must  be  of  type  <Rel as
QueryOutput<'a>>::QueryRow.

QueryPlan is automatically implemented for all types that meet these prerequisites.

Trait Parameters

• 'a: The lifetime during which the query results will remain valid.

• Rel: The relation type being queried. Must implement Relation<'a> (§4.2.1)

• Req:  A  specification  of  the  records  to  be  retrieved.  Must  implement
QueryRequest (§4.6.1)

Notable Implementors

FallbackPlanner (§4.2.8)  is  capable  of  executing  any  query  request  against  any
relation.

Methods

execute(Self)-><Self as IntoIterator>::IntoIter

Produces an iterator of the query results

col!{ A: usize }
col!{ B: usize }

let rel = vec![(A(1), B(5)), (A(2), B(3)), (A(3), B(7))];
let mut result: Vec<(A,B)> = vec![];

let plan = FallbackPlan::prepare(
    &rel,
    BlankRequest.set_order::<Desc<B>>()
);

for rec in plan.execute() {
    result.push(rec.project());
}

result
 vec![ (A(3), B(7)), (A(1), B(5)), (A(1), B(5)) ]⟹ A

4.2.8 FallbackPlanner Type

FallbackPlanner is  an  ordinary  Tylisp  function  which  can  be  used  as  the  query
planner for any Relation. It uses a sequential scan to produce correct results for all
query requests.
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FallbackPlanner is only relevant to library authors. If a sequential scan is always the
most  appropriate  query  plan  for  a  custom  relation,  its  author  can  specify
RelationImpl::Planner = FallbackPlanner,  which avoids  the  need to  write  a
custom query plan.

Syntax

{FallbackPlanner, @&'a R, @Q}  FallbackPlan<'a, ⟹ A R, Q>

Returns a query plan type that uses a sequential-scan approach to retrieve results
for the query Q from relation R.

Preconditions

R must  implement  Relation<'a> (§4.2.1),  and  Q must  implement  QueryRequest
(§4.6.1).

4.2.9 FallbackPlan Type

FallbackPlan<'a,  R, Q> is a sequential-scan query plan to execute the query  Q
against the relation  R. It is a valid query plan for any combination of types  R and  Q
where  R implements  Relation<'a> (§4.2.1)  and  Q implements  QueryRequest
(§4.6.1).

Library  authors  can  use  FallbackPlan to  ensure  that  a  relation's  custom  query
planner can properly serve all possible queries: In the event that the user provides an
unexpected query, the planner can return FallbackPlan instead of the relation's custom
query plan.

defun!{ CanUseIndex { ... }}

defun!{ MyPlanner {
    ('a, Rel, Req) { &'a Rel, Req } =>
    {If, {CanUseIndex, @Req}, @MyIndexPlan<'a, Rel, Req>
                            , @FallbackPlan<'a, Rel, Req>};
}}

Type Parameters

'a is the program region where the query results will be valid

R is the relation type to be queried. Must implement Relation<'a> (§4.2.1)

Q is the query to be executed. Must implement QueryRequest (§4.6.1)
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Query Plan

• Iterate over all records in R

• Discard records which do not match the selection filter Q::Filters

• If a particular sort order was requested:

◦ Collect the results in a vector

◦ Sort the vector according to Q::OrderBy

Implemented Traits

Table 4.1: Implemented Traits for FallbackPlan<'a,R,Q>

Trait Bounds Associated Types

QueryPlanImpl<'a,R,Q> R: Relation<'a>
Q: QueryRequest

IntoIterator R: Relation<'a>
Q: QueryRequest

Item = R::QueryRow

4.2.10 PostSortPlan Type

PostSortPlan<'a, R, Q> is a query plan which will perform an unordered query
against R, and then sort the results according to Q::OrderBy.

Library  authors  can  use  PostSortPlan to  re-order  query  results  according  to  the
presentation order specified by Q:

defun!{ MyPlanner {
    ('a, Rel, Req:QueryRequest) {&'a Rel, Req} =>
        {If, {EmptyP, @Req::SortKey},
             @MyPlan<'a, Rel, Req::Filters>,
             @PostSortPlan<'a, Rel, Req>};
}}

Type Parameters

'a is the program region where the query results will be valid

R is  the  relation  type  to  be  queried.  Must  implement  Queryable<'a,
ReplaceOrder<Q, HNil>> (§4.2.5, 4.6.7)

Q is the query to be executed. Must implement QueryRequest (§4.6.1)
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Requirements

R must use a different query plan for producing unordered results. Failure to do so may
result in either a compile error or infinite recursion.

Query Plan

• Ask  R to  return  records  which  satisfy  the  selection  filter  Q::Filters,  and
collect them into a vector.

• Sort the vector according to the defined presentation order Q::OrderBy.

Implemented Traits

Table 4.2: Implemented Traits for PostSortPlan<'a,R,Q>

Trait Bounds Associated Types

QueryPlanImpl<'a,R,Q> R: Relation<'a>
Q: QueryRequest

IntoIterator R: Queryable<'a,
     ReplaceOrder<Q, HNil>>

Item = R::QueryRow

4.3 Column Declarations

In relational algebra, columns are specified with two properties: The domain of valid
values  and  a  role  name which  specifies  the  semantic  meaning of  those  values.   In
Memquery, each role is declared via the provided col! macro. For example, this defines
a new public role, PartId, over the domain of 32-bit unsigned integers:

col!{ pub PartId: u32 }

A column's domain may represented by any Rust type that satifies the Sized,  Clone,
and 'static bounds:

• Sized indicates that the data has a fixed size known as compile time. This
ensures  that  the  it  can  be  stored  directly  inside  records  without  any
indirection or heap allocation.

• Clone allows values to be duplicated. This ensures that a redundant copy of
the data can be stored in an index.

• 'static prevents values from containing references that could expire. This
is a technical limitation of Rust's runtime type reflection system (§2.2.5),
which is used several places inside Memquery.  
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Values that don't satisfy Sized or Clone may be stored inside a column by wrapping
them in one of Rust's standard containers: For example, a reference-counted pointer,
Rc, implements both Sized and Clone even when its target doesn't.

The  'static requirement can't  be easily  worked around in the general  case.  Most
borrow  types  (those  that  carry  a  lifetime  annotation),  however,  have  owned
counterparts that satisfy a  'static bound. It  is also possible to store raw pointers
inside a column, but it is then the user's responsibility to ensure that they remain valid
until they are no longer needed.  Note that this bound requires the type to be valid for
the entire program, but not necessarily any instances of that type.

4.3.1 Internal Representation

Figure 4.2 shows an overview of the relationships involved in the representation of a
role type C with domain T. This structure is created by the user defining T as a normal
Rust type and then invoking the macro col!{ C : T }, which defines both C and its
related trait implementations. C is guaranteed to have the same memory representation
as T, which allows references to T to be converted into references to C freely.

As this operation would normally be unsafe, the  Col trait provides safe functions to
perform this conversion, wrap_ref and wrap_mut. Similarly, it is sometimes necessary
to change the role name of a value. This facility is provided by Col's rename* methods,
which will transform the value into any role of the same domain.

Many operations need to know the value of a particular column, but will work equally
well with either owned or borrowed data. The ColProxy trait provides this abstraction,
allowing generic functions and datatypes to accept owned and borrowed column data
interchangeably.

Several of the implemented traits are primarily used by other parts of Memquery. The
LispId and Eval traits (§3.5.1, 3.2.3) enable the role type to be processed by Tylisp.
This, in turn, allows the Header trait (§4.4.1) to reject duplicate columns. The Record
trait (§4.5.1) allows an individual data point to act as a single-column record.
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Figure 4.2: Col trait and related types (abridged)

4.3.2 col! Macro

The col! macro defines a role type that can be manipulated by Memquery records and
relations.

Syntax

col!{ vis name : inner };

Parameters

• vis – An optional visibility specifier,  such as  pub,  that will  be applied to the
generated struct

• name – An identifier that will be the name of the role type to be defined

• inner – A type that represents the allowable domain of values for the new role

Preconditions

The  name must not conflict with any other type names in scope where the macro is
called, and inner must conform to Sized, Clone and 'static type bounds.

Macro Expansion

The macro defines a type called  name in the current scope and provides a number of
unconditional trait implementations:

• On name: Col<Inner=inner> (§4.3.3), LispId (§3.5.1), Eval (§3.2.3), 
From<inner>, Into<inner>, Borrow<inner>, BorrowMut<inner>, 
Deref<Target=inner>, DerefMut, AsRef<inner>, AsMut<inner>, 
ColProxy<For=name> (§4.3.4), Record<Cols=sexpr!{ name }> (§4.5.1), 
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FromRecordImpl<Cols=sexpr!{ name }> (§4.5.6), 
FromExternalRecord<'a, Cols=sexpr!{ name }> (§4.5.7)

• On &'a name: From<&'a inner>, FromExternalRecord<&'a inner, 
Cols=sexpr!{name}>

Additionally, if inner implements any of the traits Debug,  Copy, Hash,  Default, Ord,
PartialOrd, Eq, or PartialEq, the corresponding trait is also implemented for name.

4.3.3 Col Trait

The Col trait indicates that Self is an individual data point managed by Memquery.  It
is may be used as an item inside a Header (§4.4.1). In the examples below, PartId and
AltPartId are column types defined as following:

col!{ pub PartId: usize };
col!{ pub AltPartId: usize };

Prerequisites

Types that  implement the  Col trait  must be defined via the  col! macro.   Refer  to
§4.3.2 for details.

Associated Types

Inner: The domain of values that can be stored within this column. Must satisfy a
'static bound and implement the traits Sized and Clone.

Methods

inner_ref(&self)->&Self::Inner

Returns a reference to the stored domain value.

PartId(6).inner_ref()  &6⟹ A

rename<C>(self)->C

Constructs an instance of the column type C with the same domain value as Self.
Produces a compile error if  C does not implement  Col or  C::Inner is not the
same as Self::Inner.

PartId(6).rename::<AltPartId>()  AltPartId(6)⟹ A

rename_ref<C>(&self)->&C

Renames  the  column  type  of  a  shared  reference,  without  constructing  a  new
instance. Produces a compile error if  C does not implement Col or  C::Inner is
not the same as Self::Inner.

PartId(6).rename_ref::<AltPartId>()  &AltPartId(6)⟹ A
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rename_mut<C>(&mut self)->&mut C

Renames the column type of an exclusive reference, without constructing a new
instance. Produces a compile error if  C does not implement Col or  C::Inner is
not the same as Self::Inner.

let mut part_id = PartId(6);
let alt_part_id = part_id.rename_mut::<AltPartId>();
*alt_part_id = AltPartId(42);
part_id

 &PartId(42)⟹ A

Associated Functions

wrap_ref(&Self::Inner)->&Self

Renames a shared reference to the domain type as a shared reference to Self.

PartId::wrap_ref(&7)  &PartId(7)⟹ A

wrap_mut(&mut Self::Inner)->&mut Self

Renames an exclusive reference to the domain type as an exclusive reference to
Self.

let mut id = 5;
let part_id = PartId::wrap_mut(&id)
*part_id = PartId(7);
id

 7⟹ A

4.3.4 ColProxy Trait

Indicates  that  Self provides  access  to  a  single  Memquery  data  point,  possibly  by
reference.

Prerequisites

None. For every type C:Col, ColProxy is automatically implemented for C, &C, &mut
C, Box<C>, Rc<C>, and Arc<C>. Users may implement it manually for custom types.

Associated Types

For: The column type that Self provides access to. Must implement Col
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Methods

into_col(self)->Self::For

Transforms Self into its proxied column type. For reference types, this clones the
value.

(&PartId(5)).into_col()  PartId(5)⟹ A
AltPartId(42).into_col()  AltPartId(42)⟹ A

col_ref(&self)->&Self::For

Retrieves a shared reference to the proxied column type

(&PartId(5)).col_ref()  &PartId(5)⟹ A
AltPartId(42).col_ref()  &AltPartId(42)⟹ A

4.4 Relational Headers

In relational algebra, operations, records, and relations are primarily characterized by a
set of role names, a header. In Memquery, this is represented by an HList of role types
which contains no duplicates. The  Header trait is automatically implemented for all
such lists.

Header types have a dual use. In most cases, they are never instantiated and simply
represent  properties  of  some  other  type,  such  as  a  record  or  relation.  When
instantiated, they serve as a lowest-common-denominator record type: Any record can
be converted into its header, which can then be manipulated by HList operations.

Figure 4.3 shows an overview of some of the traits implemented for headers made up of
columns A, B, C, etc:

• Header provides a suite of useful methods for user code,
• HasCol<X> allows code to be bounded on the presence of the column X,
• ProjectFrom divides a header into two parts, and
• AsListRefs transforms a reference to a header into a list of column references .
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Figure 4.3: Header types and related traits (abridged)

4.4.1 Header Trait

Header indicates that Self is a set of column types, with no duplicates.

Prerequisites

Self must implement List (§3.1.3), and every element of the list must implement the
Col trait (§4.3.3). No two elements may be of the same type.

Header is automatically implemented for all types that meet these prerequisites.

Associated Functions

has_col<C>()->bool

Returns true if the column type C is a member of  Self. C must implement the
Col trait (§4.3.3).

col!{A:usize}
col!{B:usize}
col!{C:usize}
type H = sexpr!{A,B};

H::has_col::<C>()  false⟹ A
H::has_col::<A>()  true⟹ A
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is_disjoint<H>()->bool

Returns  true if the type  H contains no columns that are members of  Self.  H
must implement Header.

col!{A:usize}
col!{B:usize}
col!{C:usize}
type H = sexpr!{A,B};

H::is_disjoint::<sexpr!{B,C}>()  false⟹ A
H::is_disjoint::<sexpr!{C}>()  true⟹ A

clone_from_rec<R>(&R)->Self

Constructs an instance of Self by cloning the relevant columns from the record
R. R must implement the Record trait (§4.5.1), and all columns in Self must be
present in R::Cols.

clone_from_rec_unchecked<R>(&R)->Self

Constructs an instance of Self by cloning the relevant columns from the record
R.  R must implement the Record trait (§4.5.1); produces a runtime panic if any
member column of Self is absent from R::Cols.

Methods

col_opt<C>(&Self)->Option<&C>

Returns a reference to the column  C contained within  Self.  C must implement
the Col trait (§4.3.3). If C is not an element of Self, returns None.

col_ref<C>(&Self)->&C

Returns a reference to the column  C contained within  Self.  C must implement
the Col trait (§4.3.3) and be an element of Self.

4.4.2 HasCol Trait

HasCol<C> indicates that the column C is a member of Self

Prerequisites

Self must  implement  Header.  C must  implement  the  Col trait  (§4.3.3)  and  be  a
member of Self.

HasCol is automatically implemented for all types that satisfy these prerequisites.
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Trait Parameters

C is the column type whose presence is being tested. Must implement the  Col trait
(§4.3.3) and be a member of Self.

Associated Types

Index is a locator type, either There<...> or Here (§3.1.9), that represents the location
of C within Self. Index is never Missing, as C is guaranteed to be present.

Table 4.3: Sample HasCol Implementations

Self HasCol<A>::Index

sexpr!{A,B,C} Here

sexpr!{B,A,C} There<Here>

sexpr!{B,C} not implemented

4.4.3 ProjectFrom Trait

ProjectFrom<H> constructs Self from an instance of H

Prerequisites

Self must  implement  Header,  and  the  elements  of  Self must  be  a  subset  of  the
elements of H.

ProjectFrom is  automatically  implemented  for  all  types  which  meet  these
prerequisites.

Type Parameters

H is the type which is the source of the projection data. Must implement the Header
trait.

Associated Types

Remainder is  a  list  of  the  elements  in  H that  are  not  members  of  Self.  Must
implement the Header trait.

Table 4.4: Sample ProjectFrom Implementations

Self H ProjectFrom<H>::Remainder

sexpr!{A,B,C} sexpr!{A,B,C} sexpr!{}

sexpr!{C,B,A} sexpr!{A,B,C} sexpr!{}

sexpr!{B} sexpr!{A,B,C} sexpr!{A,C}

sexpr!{A,B,C} sexpr!{A,C} not implemented
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Associated Fumctions

fn project_from(H)->(Self, Self::Remainder)

Constructs both Self and Remainder from H.

<sexpr!{A,B}>::project_from(sexpr_val!{B(2), A(1), C(3)})
 (sexpr_val!{A(1), B(2)}, sexpr_val!{C(3)})⟹ A

<sexpr!{C}>::project_from(sexpr_val!{B(2), A(1), C(3)})
 (sexpr_val!{C(3)}, sexpr_val!{B(2), A(1)})⟹ A

4.4.4 AsListRefs Trait

The AsListRefs<'a> trait provides a method to transform an ExternalRecord<'a>
(§4.5.2) into  a list of column references.

Trait Parameters

'a is the lifetime in which the references will be valid

Prerequisites

Self must  be  a  Header.  Automatically  implemented  for  all  types  that  implement
Header.

Associated Types

AsRefs a list of column references. Implements List, and every element is of the form
&'a C, where C is an element of Self.

Table 4.5: Sample AsListRefs<'a> Implementations

Self AsListRefs<'a>::AsRefs

sexpr!{} sexpr!{}

sexpr!{A,B} sexpr!{&'a A, &'a B}

Methods

ref_from_ext_rec<R>(&R)->Self::AsRefs

Retrieve  column  references  from  the  record  R.   R must  implement
ExternalRecord<'a> (§4.5.2)

<sexpr!{B,A}>::ref_from_ext_rec( &(A(5), B(7), C(42)) )
 sexpr_val!{&B(7), &A(5) }⟹ A
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4.5 Records

Memquery represents relational  tuples  via  the  Record trait.  Some records,  such as
those  returned  by  queries,  contained  borrowed  data.  These  implement  the
ExternalRecord<'a> trait, which provides methods to retrieve references which can
outlive  the  record  type  itself.   Table  4.6 summarizes  the  primitive  types  that
implement these traits.

The  FromRecord,  FromRecordImpl,  and  FromExternalRecord traits  provide  a
standardized interface for transforming record types.

Table 4.6: Record implementations for primitive types

Type Record Bounds
ExternalRecord<'a> 
Bounds

C C: Col Not implemented

&'a C C: Col Self: Record

sexpr!{C1,
       C2, ... }

∀i. Ci: Col

∀i. ∀j. (i ≠ j)  (⇒ ( Ci ≠ Cj)
Not implemented

sexpr!{&'a C1,
       &'a C2, ...}

∀i. Ci: Col

∀i. ∀j. (i ≠ j)  (⇒ ( Ci ≠ Cj)

Self: Record

&'a R R: Record Self: Record

(R1, R2, ...) ∀i. Ri: Record

∀i. ∀j. (i ≠ j) ⇒ (
  Ri::Cols ∩ Rj::Cols = ∅

Self: Record

∀i.
    Ri: ExternalRecord<'a>

4.5.1 Record Trait

Record indicates that Self is a relational tuple.

Requirements

None.

Associated Types

Cols specifies the columns present in the record. Must implement  Header (§4.4.1).

Methods

into_cols(Self)->Self::Cols

Transforms Self into a Header instance. This can be used to unify the types of
various records with a common header.
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clone_cols(&Self)->Cols

Constructs a new Header instance without consuming Self.

col_ref<C>(&Self)->&C

Retrieve a reference to the column type C. C must implement Col (§4.3.3), and be
a member of Self::Cols.

col_opt<C>(&Self)->Option<C>

Retrieve a reference to the column type C. Returns None if C is not a member of
Self::Cols.

C must implement the Col trait (§4.3.3).

project<H>(Self)->Projection<Self, H>

Construct a view of this record which only allows access to columns which are
members of  H.  H must implement the Header and ProjectFrom<Self::Cols>
traits (§4.4.1, 4.4.3)

project_into<R>(Self)->R

Construct  an  instance  of  type  R based  on  the  data  stored  in  Self.  R must
implement FromRecord<Self::Cols> (§4.5.5).

rename_col<A,B>(Self)->Rename<Self,A,B>

Construct a view of this record that replaces the column type A with B. A and B
must  both  implement  Col (§4.3.3),  and  A::Inner must  be  the  same type  as
B::Inner.

Implementing Record

Defining a record type only requires specifying its header and providing one method
implementation, col_opt. This is exactly analogous to Header::col_opt (§4.4.1) and
must return Some(...) for any role listed in its header. Other access methods can also be
overridden  where  a  more  performant  approach  is  available  than  the  default
implementation.

A typical implementation is shown below. This example is taken from the inventory
management  case  study  described  in  §5.  The  Commitment structure  describes  the
quantity of a particular part that has been assigned for use in the specified project.

Though the col_opt function here uses Rust's runtime dispatch system (§2.2.5), it is
designed to be devirtualized by the optimizer. Because Rust monomorphizes generic
functions, the code for each role type C will be generated separately. TypeId::of is a
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constant function, so constant folding will reduce each condition to a simple true or
false. Dead code elimination then leaves only one possible value for the vtable pointer
stored inside the dyn Any object. The efficacy of these techniques has been confirmed
by disassembling the output of similar functions.

col!{ pub PartId: usize }
col!{ pub ProjectId: usize }
col!{ pub QtyCommitted: usize }

pub struct Commitment {
    part_id: usize,
    project_id: usize,
    quantity_committed: usize
}

impl Record for Commitment {
    type Cols = sexpr!{ PartId, ProjectId, QtyCommitted };

    fn col_opt<C:Col>(&self)->Option<&C> {
        use std::any::{Any, TypeId};
        if TypeId::of::<C>() == TypeId::of::<PartId> {
            PartId::wrap_ref(&self.part_id) as &dyn Any
        } else if TypeId::of::<C>() == TypeId::of::<ProjectId> {
            ProjectId::wrap_ref(&self.project_id) as &dyn Any
        } else {
            QtyCommitted::wrap_ref(&self.project_id) as &dyn Any
        }.downcast_ref()
    }
}

4.5.2 ExternalRecord Trait

ExternalRecord<'a> indicates that Self is a record that contains data borrowed for
the lifetime 'a.

Requirements

Self must implement Record

Trait Parameters

'a is the program region in which the column data is known to remain valid.

Methods

ext_col_ref<C>(&Self)->&'a C

Retrieve  a  reference  to  the  column  type  C.  C must  implement  the  Col trait
(§4.3.3) and be a member of Self::Cols.
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ext_col_opt<C>(&Self)->Option<&'a C>

Retrieve a reference to the column type  C, which must implement the  Col trait
(§4.3.3). Returns None if C is not a member of Self::Cols.

4.5.3 Projection Type

Projection<R, H> is a record that represents data from type R for columns present
in the header H.

Type Parameters

R is  the  type  which  contains  the  column  data.  Must  implement  the  Record trait
(§4.5.1).

H specifies the columns accessible via the projection. Must implement the Header and
ProjectFrom<R::Cols>  traits (§4.4.1, 4.4.3).

Construction

Projection instances are obtained via the project method of the Record trait.

Implemented Traits

All  Projection instances  implement  Record.  They  also  implement
ExternalRecord<'a> when R implements ExternalRecord<'a> (§4.5.2).

4.5.4 Rename Type

Rename<R,A,B> is a record that represents the data from record  R where column  A
has been renamed to B. 

Type Parameters

R is the type which provides the underlying data. Must implement the Record trait.

A is the column that will be replaced. Must implement the Col trait (§4.3.3).

B is the column type that will replace A. Must implement the Col trait and be absent
from R::Cols. B::Inner must be the same type as A::Inner.

Construction

Rename instances  are  obtained  via  the  rename_col method  of  the  Record trait
(§4.5.1).

Implemented Traits

All Rename instances implement Record. They also implement ExternalRecord<'a>
when R implements ExternalRecord<'a> (§4.5.2).
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4.5.5 FromRecord Trait

FromRecord<H> indicates that Self can be constructed from records that contain the
columns in H.

Trait Parameters

H is  the  relational  header  of  the  source  record.  Must  implement  the  Header and
ProjectFrom<<Self as FromRecordImpl>::Cols> traits (§4.4.1, 4.4.3).

Prerequisites

Self must  implement  the  FromRecordImpl trait  (§4.5.6).  FromRecord<H> is
automatically implemented for these types where  H meets satisfies the requirements
listed in “Trait Parameters”.

Associated Types

Remainder contains the columns of  H that are not consumed during the creation of
Self. Implements the Header trait.

Associated Functions

from_rec<R>(R)->(Self, Self::Remainder)

Construct  an  instance  of  Self using  the  data  in  R, which  must  implement
Record<Cols=H>. Usually invoked via the project_into method of the Record
trait (§4.5.1).

4.5.6 FromRecordImpl Trait

FromRecordImpl specifies  the  portion  of  the  FromRecord implementation  that  is
specific to the type Self.

Associated Types

Cols specifies  the  columns  that  will  be  consumed  when  constructing  Self.  Must
implement Header (§4.4.1).

Associated Functions

from_rec_raw<R>(R)->Self

Consumes R to construct  Self.  R must implement Record<Cols=Self::Cols>
(§4.5.1).
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Example Implementation

impl FromRecordImpl for Commitment {
    type Cols = sexpr!{ PartId, ProjectId, QtyCommitted };

    fn from_rec_raw(r: impl Record<Cols=Self::Cols>)->Self {
        let sexpr_pat!{part:_, proj:_, qty:_} = r.into_cols();
        Commit {
            part_id: *part,
            project_id: *proj,
            quantity_committed: *qty
        }
    }
}

4.5.7 FromExternalRecord Trait

FromExternalRecord<'a> provides  a  method  to  construct  Self from  a  record
containing borrowed data.

Trait Parameters

'a is the program region in which the borrowed data is known to be valid.

Associated Types

Cols is specifies the columns that must be present to construct Self. Must implement
Header (§4.4.1).

Associated Functions

from_ext_rec_raw<R>(R)->Self

Constructs Self from the borrowed data contained in R, which must implement
ExternalRecord<'a> and Record<Cols=Self::Cols> (§4.5.1-2).

from_ext_rec<R>(R)->Self

Constructs Self from the borrowed data contained in R, which must implement
ExternalRecord<'a>.  Self::Cols must  implement  ProjectFrom<R::Cols>
(§4.4.3). Usually invoked via the iter_as method of the Relation trait (§4.2.1).
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Example Implementation

There is a default implementation for from_ext_rec, so implementors need only write
from_ext_rec_raw.

pub struct QueryResultRef<'a> {
    pub part_id: usize,
    pub part_name: &'a str,
    pub quantity_committed: usize,
}

impl<'a> FromExternalRecord<'a> for QueryResultRef<'a> {
    type Cols = sexpr!{PartId, PartName, QtyCommitted};
    fn from_ext_rec_raw(r: impl ExternalRecord<'a, 
Cols=Self::Cols>)->Self {
        QueryResultRef {
            part_id: r.ext_col_ref::<PartId>().0,
            part_name: r.ext_col_ref::<PartName>().as_str(),
            quantity_committed: r.ext_col_ref::<QtyCommitted>().0,
        }
    }
}

4.6 Query Specification

Each query is  represented by an object  which implements the  QueryRequest trait,
which  specifies  a  selection  filter  and  presentation  order.  The  selection  filter  is  a
conjunction of individual terms, each of which implement the QueryFilter trait. Each
of these are represented as a list of individual terms, which may be of varying types.

Library authors need to be familiar with all of the traits and types described in this
chapter. Application programmers may wish to learn this material as well in order to
express queries that would be cumbersome or impossible with view adapters (§4.7).
Architects  do  not  need  to  use  these  directly,  but  understanding  how  queries  are
represented  may  aid  their  analysis  of  how  different  relations  will  perform  when
presented with particular queries.

4.6.1 QueryRequest Trait

QueryRequest indicates that Self is a query specification.

Requirements

Must implement Clone.
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Associated Types

Filters is a list of filter terms; only records which satisfy all terms will be returned
from this query. Must implement the List trait (§3.1.3), and every list element must
implement the QueryFilter trait (§4.6.2).

OrderBy is list of sort keys. Records returned from this query will be presented in the
lexicographic order defined by this list. Must implement the List trait, and every list
element must implement the SortKey trait (§4.6.3).

Methods

into_filters(Self)->Self::Filters

Retrieves an instance of the query's selection filters, which may contain captured
variables.

add_filter<F>(Self, F)->AddFilter<Self,F>

Constructs a query which selects records that match  F  ∧ Self::Filters, and
preserves presentation order. F must implement QueryFilter.

set_filters<F>(Self, F)->ReplaceFilters<Self,F>

Constructs  a  query  which  selects  records  that  match  the  filter  list  F,  while
preserving the presentation order.  F must implement the List  trait,  and every
element of F must implement QueryFilter.

set_order<O>(Self)->ReplaceOrder<Self,O>

Constructs a query which selects records that match Self::Filters, presented
in the order specified by O. O must implement the List trait, and every element
of O must implement the SortKey trait.

4.6.2 QueryFilter Trait

QueryFilter indicates that Self is a record-selection operator.

Associated Types

ReqCols specifies the columns inspected by this filter.  Must implement the  Header
trait (§4.4.1).

Methods

test_record<R>(&self, &R)->bool

Check whether the given record of type R should be selected. If R is missing any
columns from Self::ReqCols, this method must return true if there exists any
combination of the missing values which would allow the record to be selected.
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bounds_of<C>(&self)->(std::ops::Bound<&C>, std::ops::Bound<&C>)

Returns a range of valid values for the column C. If a record r contains a C value
that falls outside this range, self.test_record(&r) must return false. C must
implement the Col and Ord traits (§4.3.3).

4.6.3 SortKey Trait

SortKey indicates that Self specifies a presentation order for records.

Associated Types

ReqCols specifies the columns which are inspected to determine the ordering. Must
implement Header (§4.4.1).

Methods

cmp<R>(a:&R, b:&R)->std::cmp::Ordering

Returns the relative ordering between records a and b. R must implement Record
(§4.5.1), and R::Cols must be a superset of Self::ReqCols.

sort<I,R>(I)->impl Iterator<Item=R>

Returns the records yielded from the iterator I in the specified presentation order.
I must implement Iterator<Item=R>.  R must implement Record (§4.5.1), and
R::Cols must be a superset of Self::ReqCols.

4.6.4 BlankRequest Type

BlankRequest represents a query that returns all records in a relation, in an arbitrary
order.

Implemented Traits

QueryRequest< Filters = sexpr!{}, OrderBy = sexpr!{} > (§4.6.1)

4.6.5 AddFilter Type

AddFilter<Q,F> represents a query that contains all the results from a query Q that
also satisfy the filter F.

Type Parameters

Q is the source query. It must implement QueryRequest (§4.6.1)

F is the filter term to be added. Must implement QueryFilter (§4.6.2).
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Construction

AddFilter instances are obtained via the add_filter method of the QueryRequest
trait.

Implemented Traits

Table 4.7: Implemented traits for AddFilter<Q,F>

Trait Bounds Associated Types

QueryRequest Q: QueryRequest

F: QueryFilter
Filters = sexpr!{F; Q::Filters}

OrderBy = Q::OrderBy

4.6.6 ReplaceFilters Type

ReplaceFilters<Q,F> represents  a  query that  selects  records  according to  F and
presents them in the order specified by Q.

Type Parameters

Q is the query that determines the presentation order. Must implement QueryRequest
(§4.6.1)

F  is  the  new  selection  filter  list.  Must  implement  List and  every  element  must
implement QueryFilter (§3.1.3, 4.6.2).

Construction

ReplaceFilter instances  are  obtained  via  the  replace_filters method  of  the
QueryRequest trait.

Implemented Traits

Table 4.8: Implemented traits for ReplaceFilter<Q,F>

Trait Bounds Associated Types

QueryRequest Q: QueryRequest

F: List
(∀ I∊F). I: QueryFilter

Filters = F
OrderBy = Q::OrderBy

4.6.7 ReplaceOrder Type

ReplaceOrder<Q,O> represents a query that returns the results specified by the query
Q presented in the order O.
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Type Parameters

Q is the source query. Must implement QueryRequest (§4.6.1)

O is  the  new  presentation  order.  Must  implement  List and  every  element  must
implement SortKey (§3.1.3, 4.6.3).

Construction

ReplaceOrder instances  are  obtained  via  the  set_order method  of  the
QueryRequest trait.

Implemented Traits

Table 4.9: Implemented traits for ReplaceOrder<Q,O>

Trait Bounds Associated Types

QueryRequest Q: QueryRequest

O: List

(∀ I O)∊ . I: SortKey

Filters = Q::Filters

OrderBy = O

4.6.8 Exact Type

Exact<C> is a filter term which selects records with a specific value for column C.

Type Parameters

C specifies  the column to  be  constrained.  Must implement  ColProxy (§4.3.4),  and
C::For must implement Eq.

Construction

Exact instances can be constructed directly:

col!{A: usize}
let a = A(42);
let exact = Exact(&a);

Implemented Traits

Table 4.10: Implemented traits for Exact<C>

Trait Bounds Associated Types

QueryFilter C: ColProxy ReqCols: sexpr!{C::For}
Clone C: Clone
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4.6.9 ColRange

ColRange<C> is a filter term which selects records within a specific range for column
C.

Type Parameters

C specifies  the column to  be  constrained.  Must implement  ColProxy (§4.3.4),  and
C::For must implement Ord.

Construction

ColRange instances can be constructed via the From trait:

col!{A: usize}
let range = ColRange::from( A(7) .. A(42) );

Implemented Traits

Table 4.11: Implemented traits for ColRange<C>

Trait Bounds Associated Types

QueryFilter C: ColProxy ReqCols: sexpr!{C::For}

From<B> B: RangeBounds<C>
Clone C: Clone

4.6.10 Asc Type

Asc<C> is a presentation order that sorts  records in ascending order of the column
value C.

Type Parameters

C is the column to be inspected for this ordering. Must implement the Col (§4.3.3) and
Ord traits.

Construction

The  Asc type  is  only  used  for  compile-time  information;  no  instances  are  ever
constructed.

Implemented Traits

Table 4.12: Implemented traits for Asc<C>

Trait Bounds Associated Types

SortKey C: Col + Ord ReqCols: sexpr!{C}
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4.6.11 Desc Type

Desc<C> is a presentation order that sorts records in descending order of the column
value C.

Type Parameters

C is the column to be inspected for this ordering. Must implement the Col (§4.3.3) and
Ord traits.

Construction

The  Desc type  is  only  used  for  compile-time  information;  no  instances  are  ever
constructed.

Implemented Traits

Table 4.13: Implemented traits for Desc<C>

Trait Bounds Associated Types

SortKey C: Col + Ord ReqCols: sexpr!{C}

4.7 View Adapters

In  Memquery,  relational  operators  are  represented  by  adapter  objects  which  are
themselves relations; each adapter object captures its input relations. This is analogous
to the behavior of iterator adapters in Rust's standard library (§Error: Reference source
not found).  Because ownership of the source relations is  transferred to the adapter
object, the sources will be unusable after an adapter is created. As this is sometimes
undesirable,  Memquery provides a  mechanism to transform references into relation
types, RelProxy.

Application programmers should be familiar with the capabilities of all the types in this
chapter, as they form the primary query interface for application code. Architects may
also  find  them  useful  for  constructing  general-purpose  views.  Library  authors  will
usually be working at a lower level, and will rarely find these types directly useful.

4.7.1 RelProxy Type

RelProxy<P> is an adapter type that allows a reference P to a relation to be used as a
relation.
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Type Parameters

P:  A  smart  pointer  type  that  refers  to  a  relation.  Must  implement  Deref,  and
P::Target must implement RelationImpl (§4.2.3)

Query Plan

All queries are passed unchanged to P::Target

Associated Functions

new(P) -> RelProxy<P>

Constructs a new RelProxy object. RelProxy objects can also be created via the
Relation trait (§4.2.1) methods by_ref and by_mut.

Implemented Traits

Table 4.14 lists the traits directly implemented for RelProxy<P>, where P::Target =
R.

Table 4.14: Implemented Traits for RelProxy<P: Deref<Target=R>>

Trait Additional Bounds Associated Types

Deref Target = R

DerefMut P: DerefMut Target = R

RelationImpl R: RelationImpl Cols = R::Cols
FastCols = R::FastCols

QueryOutput<'a> R: QueryOutput<'a> QueryRow = R::QueryRow

Insert<H> P: DerefMut,
R: Insert<H>

Delete<Q> P: DerefMut,
R: Delete<Q>

4.7.2 FilterRel Type

FilterRel<R,F> is a relation adapter that represents the selection of records from R
which match the filter F

Type Parameters

R is the source relation. Must implement RelationImpl (§4.2.3).

F represents the condition to be selected for. Must implement QueryFilter (§4.6.2).
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Construction

FilterRel objects can be obtained via the  where_eq and  where_in methods of the
Relation trait (§4.2.1).

Query Plan

FilterRel prepends F to the list of filter terms in the query request, and then asks R to
fulfill the modified query.

Implemented Traits

Table 4.15 lists the traits directly implemented for FilterRel.

Table 4.15: Implemented Traits for FilterRel<R, F>

Trait Bounds Associated Types

RelationImpl R: RelationImpl Cols = R::Cols
FastCols =
  R::FastCols

QueryOutput<'a> R: QueryOutput<'a> QueryRow =
  R::QueryRow

Insert<H> R: Insert<H> Req: QueryRequest<
  Filters = F,
  OrderBy = HNil>

Delete<F2> R: Delete<sexpr!{F;F2}>

4.7.3 ProjectedRel Type

ProjectedRel<R,H> is  a  relation  adapter  that  represents  the  projection  of  the
relation R onto the header H.

Type Parameters

R is the source of the projection operation. Must implement RelationImpl (§4.2.3).

H is the Header that will be projected onto. Must implement ProjectFrom<R::Cols>
(§4.4.1,4.4.3).

Construction

ProjectedRel instances are created via the  project method of the  Relation trait
(§4.2.1).
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Query Plan

ProjectedRel removes all filter and ordering terms that refer to removed columns,
and then asks R to fulfill the modified query. The returned records from this subquery
are  then  encapsulated  in  Projection (§4.5.3)  instances  to  prevent  access  to  the
removed columns.

Implemented Traits

Table 4.16: Implemented traits for ProjectedRel<R,H>

Trait Associated Types

RelationImpl Cols = H,
FastCols = H ∪ R::FastCols

QueryOutput<'a> QueryRow = Projection<R::QueryRow, H>

4.7.4 OrderedRel Type

OrderedRel<R,O> is a relation adapter that presents the records in R according to the
order O.

Type Parameters

R is the source relation. Must implement RelationImpl (§4.2.3).

O is the default presentation order. Must implement List, and every element of O must
implement SortKey (§3.1.3, 4.6.3).

Construction

OrderedRel instances can be created via the order_by method on the Relation trait
(§4.2.1).

Query Plan

Given a query request Q, if Q::OrderBy is a prefix of O then a new query request Q' is
generated by setting OrderBy to O. Otherwise, Q' is identical to Q.

The modified query Q' is then fulfilled by R.
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Implemented Traits

Table 4.17: Implemented traits for OrderedRel<R,O>

Trait Bounds Associated Types

RelationImpl R: RelationImpl Cols = R::Cols,
FastCols = R::FastCols

QueryOutput<'a> R: QueryOutput<'a> QueryRow = R::QueryRow

4.7.5 SubordinateJoin Type

SubordinateJoin<R,C> is a relation adapter that represents the extension of relation
R with the relation stored in column C.

Type Parameters

R is the source relation. Must implement  RelationImpl (§4.2.3),  and  C must be a
member of R::Cols.

C is the column type which contains the subrelation. It must implement Col (§4.3.3),
and C::Inner must implement RelationImpl.  C::Inner::Cols must be disjoint to
R::Cols.

Construction

SubordinateJoin instances can be created via the subjoin method on the  Relation
trait (§4.2.1).

Query Plan

Given a query request Q with selection filter F and presentation order O,

1. Ask R to fulfill the query Q. For each record A returned,

1. Retrieve the relation R2 stored in column C

2. Ask R2 to retrieve all records which match F. For each record B returned, the
tuple (A,B) is a candidate result. 

2. Discard candidate results which do not pass the filter F.

3. If any column in R2 appears in O, collect and re-sort the results
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Implemented Traits

Table 4.18: Implemented traits for SubordinateJoin<R,C>

Trait Associated Types

RelationImpl Cols = R::Cols  ∪ C::Inner::Cols
FastCols = R::FastCols

QueryOutput<'a> QueryRow = (R::QueryRow, C::Inner::QueryRow)

4.7.6 PeerJoin Type

PeerJoin<L,R> is a relation adapter that represents the natural join of relations L and
R.

Requirements

L and R are the two source relations of the join operation. They both must implement
RelationImpl (§4.2.3).

The intersection of  L::Cols and  R::Cols must be a single column  K,  which must
define an equality operator via the Eq trait.

Query Plan

Given a query request Q with selection filter F and presentation order O,

1. Determine which source relation is primary for this query:

1. If K is a fast column of L or R, but not both, that source is secondary.

2. If  F mentions any fast columns from  L or  R,  but not both, that source is
primary.

3. If F mentions columns from only one of L or R, that source is primary.

4. Otherwise, L is primary.

2. Ask  the  primary  source  relation  to  fulfill  the  query  Q.  For  each  record  A
returned,

1. Retrieve all records from the secondary relation which match F and contain
the join key value from A. For each record B returned, PeerJoinRow<A,B>
is a candidate result.

3. Discard candidate results which do not pass the filter F.

4. If any column not in the primary relation appears in  O, collect and re-sort the
results.
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Implemented Traits

Table 4.19: Implemented traits for PeerJoin<L,R>

Trait Associated Types

RelationImpl Cols = L::Cols  ∪ R::Cols
QueryOutput<'a> QueryRow = PeerJoinRow<L::QueryRow,

                       R::QueryRow>

4.7.7 PeerJoinRow Type

PeerJoinRow<L,R> is the record type returned when querying a  PeerJoin adapter.
Implements Record and ExternalRecord traits (§4.5.1-2).

Type Parameters

L and  R are  the  record  types  returned  by  the  join's  source  relations.  They  must
implement the Record and ExternalRecord traits.

Implemented Traits

Table 4.20: Implemented traits for PeerJoinRow<L,R>

Trait Bounds Associated Types

Record L: Record
R: Record

Cols = L::Cols  ∪ R::Cols

ExternalRecord<'a> L: ExternalRecord<'a>
R: ExternalRecord<'a>

Cols = L::Cols  ∪ R::Cols

Clone L: Clone
R: Clone

4.8 Indices

The primary tool for improving query performance in a database is the  index. These
data structures store redundant copies of information to facilitate fast retrieval, at the
expense  of  storage space and modification performance.  Memquery provides both a
primary  index,  BTreeIndex,  which  directly  stores  records  and  a  secondary  index,
RedundantIndex,  which  holds  the  redundant  information  alongside  the  source
relation.

Tuning program  performance  by  adding  and  removing indices  is  a  primary task  of
architects, who should be familiar with the types described in this chapter. Neither
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library authors nor application programmers need to know much about these types:
They will usually interact with them only as generic Relation types. 

4.8.1 BTreeIndex

BTreeIndex<K,R> stores a distinct instance of the relation R for each unique value of
the column K.

Type Parameters

K is the column to index on. Must implement the Col and Ord traits (§4.3.3). Must be a
member of <R as RelationImpl>::Cols.

R is the subrelation typerelation type responsible for storing records. Must implement
the Default, Insert, and RelationImpl traits (§4.9.4, 4.2.3).

Construction

Empty BTreeIndex instances are created by calling Default::default(). They can
then be populated via the Insert trait.

Query Plan

Given a query request Q with selection filter F and presentation order O,

1. Identify the contained  K values which fall within the range allowed by  F (cf.
QueryFilter::bounds_of, §4.6.2)

2. Iterate over the corresponding subrelations (of type R), querying for all records
which match F.

3. If  O is anything other than sexpr!{} or  sexpr!{Asc<K>}, collect and re-sort
the results.
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Implemented Traits

Table 4.21: Implemented traits for BTreeIndex<K,R>

Trait Bounds Associated Types

RelationImpl R: RelationImpl
K  ∊ R::Cols
K: Ord

Cols = R::Cols
FastCols = sexpr!{K}

QueryOutput<'a> R: QueryOutput<'a> QueryRow = R::QueryRow

Insert<H> R: Insert<H>

K  ∊ H

Delete<F> R: Delete<F>
Default none
Clone R: Clone

4.8.2 RedundantIndex

RedundantIndex<K2,K1,R> stores a  K2 -> K1 index beside a single instance of  the
relation type R.

Type Parameters

K2 is the index's key column. Must implement Col and Ord traits (§4.3.3).

K1 is the column that serves as a key to the records stored in R. Must implement Col
and Ord.  RedundantIndex is most efficient when  K1 is an indexed primary key of  R,
but this is not required.

R is the relation type being indexed. R must implement RelationImpl, and R::Cols
must contain columns K1 and K2.

Construction

An empty RedundantIndex can be created via the  Default::default() method. or
an index for a pre-existing relation can be built via the new() associated function.

Associated Functions

new(R)->Self

Constructs a new RedundantIndex for the given relation R. When called, iterates
over all records in R to populate the index.
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Query Plan

Given a query request Q with selection filter F and presentation order O,

• If F refers to a member or R::FastCols or does not refer to column K2, pass the
unmodified query Q to R.

• Otherwise:

1. Identify the contained K2 values that fall within the range allowed by F (cf.
QueryFilter::bounds_of, §4.6.2)

2. Collect and sort the associated K1 values, removing duplicates

3. For each identified K1 value, query R for all records with that K1 value which
also match the filter F.

4. If  O is anything other than sexpr!{} or  sexpr!{Asc<K1>}, collect and re-
sort the results.

Implemented Traits

Table 4.22: Implemented traits for RedundantIndex<K2,K1,R>

Trait Bounds Associated Types

RelationImpl R: RelationImpl
K1  ∊ R::Cols
K2  ∊ R::Cols
K1: Col + Ord
K2: Col + Ord

Cols = R::Cols
FastCols =
  sexpr!{K2; R::FastCols}

QueryOutput<'a> R: QueryOutput<'a> QueryRow = R::QueryRow

Insert<H> R: Insert<H>
K1  ∊ H
K2  ∊ H

Default

Clone R: Clone
K1: Clone
K2: Clone

4.9 Transactions and Mutation

Because of its modular nature, any given Memquery operation may invoke code from
many different modules to complete its work. For infallible read-only operations, such
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as queries, this poses little practical difficulty. Mutations, on the other hand, need to
leave  the  system  in  a  consistent  state  regardless  of  whether  they  succeed  or  fail.
Memquery thus needs some mechanism to ensure that all of component routines agree
on whether or not an operation can succeed.

This is a simple case of the atomic transaction problem faced by distributed databases.
Because it runs within a single process, Memquery can safely assume that neither the
individual  modules  nor  the  communication  links  between  them  ever  fail:  The  root
cause of such a failure would almost certainly affect the rest of the process as well,
corrupting any potential recovery procedure.

Even though the modules will never fail, any of them may reject a proposed operation
as  invalid.  Memquery's  system  to  handle  this  is  based  on  the  Presumed  Commit
protocol  described by Mohan and Lindsay [15].  A variant of  the two-phase commit
protocol, all proposed changes are made immediately upon request. At the same time,
an  undo log  is  collected that  can  return  the  datastructure  to  its  original  state  if  a
rollback proves necessary.

Operations  are  defined  as  objects  that  implement  the  RevertableOp trait,  which
includes  the  information  necessary  to  undo  the  operation  in  the  case  that  the
transaction needs to be aborted.   Transaction instances apply these operations to a
target object, and are responsible for rolling back changes in the event of an error.  The
Insert and Delete traits provide an abstraction to construct revertable operations that
will respectively add or remove records from a relation.

4.9.1 RevertableOp Trait

RevertableOp<T> indicates  that  Self is  a  revertable  operation  which  acts  on  an
object of type T.

Library authors need to be familiar with the details of this trait in order to implement
the Insert and Delete traits for their custom relation types. Application programmers
will  generally  work with  Transactions  instead  of  interacting with  RevertableOp
directly. Architects will generally not need to interact with the transaction system.

Type Parameters

T is the type of the object to be modified.

Requirements

Given a target object  x, there must be no observable change to x after either of these
sequences occur:

• self.apply(&mut x) returns Err(...).

• self.apply(&mut x) returns Ok(y), and then y.revert(&mut x) is called.
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Associated Types

Err is  the  type  that  will  be  returned  if  this  operation  is  unsuccessful.   It  must
implement the std::error::Error trait.

Log is the type that is be responsible for reverting this operation.  Must implement
UndoLog<T>

Methods

fn apply(Self, &mut T)->Result<Self::Log, Self::Err>

Attempts  to  modify  the  given  T.  If  successful,  returns  Ok(Self::Log).  If
unsuccessful, T is unchanged and Err(Self::Err) is returned.

Example Implementation

/// Removes the last element from a vector
struct Pop;
struct RevertPop<T>(T);
struct EmptyVec;

impl Error for EmptyVec { ... }

impl<T> RevertableOp<Vec<T>> for Pop {
    type Err = EmptyVec;
    type UndoLog = RevertPop<T>;

    fn apply(self, vec:&mut Vec<T>)
       ->Result<RevertPop<T>, EmptyVec>
    {
        match vec.pop() {
            None => Err(EmptyVec),
            Some(x) => RevertPop(x)
        }
    }
}

impl<T> UndoLog<Vec<T>> for RevertPop<T> {
    fn revert(self, vec: &mut Vec<T>) {
        vec.push(self.0);
    }
}

4.9.2 UndoLog Trait

UndoLog<T> indicates that  Self is capable of reversing the change caused by a prior
RevertableOp<T>.

Library authors need to be familiar with the details of this trait in order to implement
the Insert and Delete traits for their custom relation types. Application programmers
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will generally work with Transactions instead of interacting with the UndoLog trait
directly. Architects will generally not need to interact with the transaction system.

Type Parameters

T is the type of the object that was modified.

Requirements

See the requirements for RevertableOp, §4.9.1

Methods

revert(self, &mut T)

The  given  T must  be  in  an  equivalent  state  as  it  was  immediately  after  the
corresponding RevertableOp was applied. Restores the T to a state equivalent to
immediately prior to the RevertableOp was applied.

Implementations

The transaction system defines UndoLog<T> implementations for several types, which
serve as combinators.  These are listed in Table 4.23.

Table 4.23: UndoLog<T> combinators

Type Revert Behavior

() Nothing to revert

(A, B) Reverts A and then reverts B

Option(A) If Some, reverts A

Vec<A> Reverts all elements in reverse order
Both A and B must implement UndoLog<T>

4.9.3 Transaction Type

Transaction<'a, Target, Log, Err> represents a multi-step atomic change which
is currently in progress. Note that most methods on Transaction consume Self and
produce a new Transaction instance with different type parameters.

Both application programmers and library authors will  need to be familiar with the
Transaction type,  but  architects  will  generally  not  interact  with  the  transaction
system.

Invariants

A transaction is always in one of two states, active or poisoned.
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When active, all of the attempted operations have succeeded, and a commit request will
succeed.

When poisoned, some previously attempted operation failed. The transaction target has
been restored to a state equivalent to when the transaction was started.  All  future
attempted operations on this transaction will be ignored.

Type Parameters

'a is the region in which the transaction has exclusive access to Target.

Target is the type that is being modified by this transaction.

Log is an UndoLog which will return Target to the state it was in at the beginning of the
transaction.

Err is the error type that will be returned from commit() if this transaction becomes
poisoned.

Associated Functions

start(&'a mut Target)->Transaction<'a, Target, (), Infallible>

Starts a new transaction.

Methods

commit(Self)->Result<(), Err>

Confirms the transaction's changes. If the transaction is active, returns Ok(()).
If poisoned, returns the error which caused the poisoning.

revert(Self)

Discards the transaction's changes. If the transaction is active, returns the target
to its initial state. If poisoned, this is a no-op.
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inspect(&Self)->Option<&Target>

Allows the inspection of the changes which will be committed. Returns  None if
the transaction is poisoned.

This  can  be  used,  for  example,  to  perform  an  atomic  commit  of  multiple
concurrent transactions:

let mut relation_a: A = ...;
let mut relation_b: B = ...;

let tx_a = Transaction::start(&mut relation_a).apply(...);
let tx_b = Transaction::start(&mut relation_b).apply(...);

fn check_constraints(&A, &B)->bool { ... }

match (tx_a.inspect(), tx_b.inspect()) {
    (Some(a_ref), Some(b_ref))
    if check_constraints(a_ref, b_ref) => {

// These commits will never fail
tx_a.commit().unwrap();
tx_b.commit().unwrap();

}
(_,_) => {

// Either the constraint check failed or
// one of the transactions is poisoned.
tx_a.revert();
tx_b.revert();

}
}

apply<Op>(Self, Op)->Transaction<'a, Target, ...>

Op must implement RevertableOp<Target>. If the transaction is active, applies
the given operation to Target.

If Op fails or Self is poisoned, returns a poisoned transaction.

apply_multi<Op>(Self, impl IntoIterator<Item=Op>)
  ->Transaction<'a, Target, ...>

Op must implement RevertableOp<Target>. If the transaction is active, applies
each  operation  yielded  by  the  iterator  to  Target.  If  any  operation  fails,  the
transaction becomes poisoned and no further operations are attempted.
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subtransaction<Access, Body>(Self, Access, Body)
  ->Transaction<'a, Target, ...>

If the transaction is active, executes a transaction on a component of Target.

Access must be a closure with the signature fn(&mut Target)->&mut Inner.

Body must be a closure with the signature 
  fn<'a>(Transaction<'a, Inner, ...>) -> Transaction<'a, Inner, ...>.

Access is called immediately to obtain the root value for the subtransaction, which
is then passed as an argument to Body. If the transaction returned from Body is 
active, both Access and its undo log are stored to facilitate a future revert 
operation.

If the transaction returned from Body is  potentially reverted at a future time. If 
poisoned, then Self is reverted and becomes poisoned.

struct Schema {
    a: RelA,
    b: RelB,
    ...
}

let mut db: Schema = ...;

Transaction::start(&mut db)
.subtransaction(

        |schema| &mut schema.a,
        |tx| tx.apply(RelA::insert_op(...)))

.subtransaction(
        |schema| &mut schema.b,
        |tx| tx.apply(RelB::insert_op(...)))
    .commit().unwrap()
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into_undo_log(Self)->Result<Log, Err>

Destroys  the  transaction  without  either  committing  or  reverting  it.  If  the
transaction is active, returns Ok(Log). If poisoned, returns Err(Err).

This method is primarily used by library authors to implement a RevertableOp
that performs a multi-step operation:

impl<T> RevertableOp<T> for MyOp {
    type Err = ...;
    type Log = ...;

    fn apply(self, x:&mut T)->Result<Self::Err, Self::Log> {
        Transaction::start(x)

.apply(...)
             .apply_multi(...)
             .into_undo_log()
    }
}

4.9.4 Insert Trait

Insert<H> indicates that Self is capable of adding records with header H.

Application programmers need to be familiar with how to use the  Insert trait and
library authors should be familiar with implementing it. Architects need to know which
relation types implement Insert, but do not need to know details of how it is used.

Type Parameters

H is the relational header of records to be inserted.  Must implement Header (§4.4.1).

Associated Types

Remainder contains the columns of H that are not consumed by the insert operation.
Must implement Header.

Op is  the  operation  type  that  will  actually  perform  the  insert.   Must  implement
RevertableOp<Self>.
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Associated Functions

insert_op<R>(R)->(Self::Op, Self::Remainder)

Constructs an operation that will insert the record  R into  Self. This operation
can then be applied to Self via a transaction.

R must implement Record<Cols = H> (§4.5.1).

col!{A:usize}
col!{B:usize}
col!{C:usize}

type Rel = Vec<(A,C)>;

let mut rel: Rel = vec![];

let (op, remainder) = Rel::insert_op((C(42), B(3), A(7));
Transaction::start(&mut rel).apply(op).commit().unwrap();

(rel, remainder.project::<B>())
 (vec![(A(7), C(42))], B(3))⟹ A

Methods

insert<R>(&mut Self, R)->Result<(), Self::Err>

Inserts the record R into Self. R must implement Record<Cols = H> (§4.5.1).

A  default  implementation  is  provided,  which  is  roughly  equivalent  to  the
following code (error types differ):

let (op, _) = Self::insert_op(record);
Transaction::start(self).apply(op).commit()

insert_multi<I>(&mut Self, I)->Result<(), Self::Err>

I must implement IntoIterator, and the items yielded by I must be records that
implement Record<Cols=H> (§4.5.1). 

Inserts  the  yielded  records  into  Self.  Returns  Ok(()) if  the  operation  is
successful. If any individual insert fails, all prior inserts are reverted and Err(...)
is returned; no further records are retrieved from the iterator.

A  default  implementation  is  provided,  which  is  roughly  equivalent  to  the
following code (error types differ):

let ops = records.into_iter().map(|r| Self::insert_op(r).0);
Transaction::start(self).apply_multi(ops).commit()
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4.9.5 Delete Trait

Delete<F> indicates that  Self is capable of removing records.  It is usually invoked
via the Relation::truncate method (§4.2.1).

Application  programmers  should be  familiar  with  how to  use  the  Delete trait  and
library authors should be familiar with implementing it. Architects need to know which
relation types implement Delete, but do not need to know details of how it is used.

Type Parameters

F specifies the records to be removed. It must implement the QueryFilter trait (§4.6.2).

Associated Types

Op is  the  operation  type  that  will  actually  perform  the  removal.   Must  implement
RevertableOp<Self> (§4.9.1).

Associated Functions

delete_op(F)->Self::Op

Constructs an operation that will remove all records that match the filter F from
Self. This operation can then be applied to Self via a transaction:

col!{A:usize}
col!{B:usize}

type Rel = Vec<(A,B)>;

let mut rel = vec![
    (A(1), B(2)),
    (A(2), B(5)),
    (A(3), B(2)),
];

Transaction::start(&mut rel)
    .apply(Rel::delete_op(Exact(B(2))))
    .commit()
    .unwrap();

rel
 vec![(A(2), B(5))]⟹ A
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5 Case Study
The  fundamental  claim  that  both  Codd  and  Parnas  make  is  that  it  is  unwise  to
intertwine code that specifies what information is needed with code that specifies how
to retrieve it [2,1]. They each present an example problem and several different data
storage models that could be used to implement a solution. Codd's problem is a simple
manufacturing inventory management system, and Parnas' problem is writing a text
indexing  program.  They  then  claim,  plausibly  but  without  direct  evidence,  that
programs written directly against these various data models must necessarily be quite
different to each other. This hinders the ability of maintenance programmers to adjust
the underlying storage model for changing operational conditions.

This  study  translates  Codd's  example  data  models  and  sample  query  into  Rust
programs.  It  consists  of  two  batteries  of  implementations:  One  based  on  Rust's
standard library collections, comparable to most modern languages', and another based
on Memquery. Each battery contains implementations that correspond to the various
storage models originally proposed by Codd.

A  common  goal  of  software  re-engineering  efforts  is  to  improve  the  program's
performance. To this end, each implementation's query performance is measured. A
significant difference in performance indicates that there is a practical reason to prefer
one structure over another.

It  is  important  to  note,  however,  that  the  best  performance  does  not  necessarily
indicate  the  best  implementation.  Factors  not  measured  here,  such  as  code
maintainability,  may  make  a  less-performant  implementation  more  desirable  in
practical  use.  Also,  the  study  measure  the  performance  of  only  one  operation.  In
practice, a program's data model needs to accommodate a wide variety of different
operations.  Altering  the  model  to  improve  the  performance  of  one  operation  often
hinders  the  performance of  others.  The performance each  operation has  a  different
effect  on  the  overall  program  utility:  Improving  the  performance  of  a  frequent
operation has more practical impact than improving the performance of a rare one.

5.1 Methodology

To illustrate  the  problems caused by hierarchical  data  modeling,  Codd provides  an
example of an inventory management system. The system is required to track a number
of projects and their component parts, where some parts may be needed for several
different projects. He then describes five different hierarchical models that satisfy the
original requirements.
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He asserts that each of these models requires a different algorithm to perform a sample
query:  Listing the  part  number,  part  name,  and quantity  committed to  a  particular
project.  Instead of directly supporting this assertion, he invites readers to convince
themselves by writing sample programs for each of the provided models. This study
does just that.

5.1.1 Implementation Strategy

Each of Codd's models describe the fields that should be present in each table and how
the tables are related to each other. All of Codd's data models contain a numeric id for
each part and project, along with several additional fields. There is one field that is a
property  of  the  part-project  pair:  the  quantity  of  the  part  that  is  commited  to  the
specified project.

Because  Codd  doesn't  describe  what  indexing  strategy  should  be  used,  this  study
considers  two submodels  for  each:  One  that  indexes  solely  by  the  integer  ids  and
another that indexes specifically on the fields used in the tested query. Error: Reference
source not found summarizes the tested models.

For the control implementations, each tables is stored as a  BTreeMap that contains a
custom struct. This struct's fields directly correspond to the fields that Codd specifies.
Where Codd specifies that one table is "subordinate to" another, it is stored inside the
latter  table's  structure.  Otherwise,  the  top-level  tables  are  stored  as  fields  in  an
Inventory structure, which represents the entire data store.

Structures  1-4  have  directly  comparable  Memquery  implementations  to  their
counterpart control implementations. The Memquery implementations of Structure 5,
however, differ slightly in order to better represent real-world usage: In both 5a and 5b,
the commitment relation is defined with a primary index on  PartId and a secondary
index  on  ProjectId.  For  5b,  the  projects  relation  also  has  a  secondary  index  on
PartName. All of the schema definitions are listed in Appendix B.

The query function is a method on the Inventory structure. It takes a single argument,
the  project  name to  report  on,  and  returns  an  iterator  of  QueryResultRef values.
These values contain the three data items that Codd requested to be printed out: the
part id,  part name, and quantity of parts committed to the requested project.
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Table 5.1: Summary of control implementations

Description Structure
Part
Index

Project
Index

Commitment
Index

Projects subordinate to parts 1a Id Id
1b Id Name

Parts subordinate to projects 2a Id Id
2b Id Name

Parts and projects as peers, commitment
relationship subordinate to projects 

3a Id Id Part Id
3b Id Name Part Id

Parts and projects as peers, commitment
relationship subordinate to parts

4a Id Id Project Id
4b Id Name Project Name

Parts, projects, and commitment
relationship as Peers

5a Id Id (Part Id, Project Id)
5b Id Id (Project Name, Part Id)

Indices in some Memquery implementations vary; see the main text for details

5.1.2 Test Data and Evaluation

The datasets used for this study are synthetic. The necessary randomness is supplied
by a 12-round ChaCha stream cipher seeded with the first 256 bits of π [16,17]. The
test data consists of randomly-generated project, part, and commitment records. On
average,  each  part  is  used  by  two different  projects.  To  minimize  potential  insert-
ordering effects, each of these three record lists is shuffled prior to being presented to
the implementations' loading routines.

A sequence of 100 project names to query is also generated. These are all present in the
test data. For each implementation, the function under test consists of running each of
these  100  queries  to  completion  and  discarding  the  results.  The  query  method
signature has been designed to not require any heap allocations to be performed during
the measurement phase of the performance tests.

5.1.3 Performance Measurement

All of the implementations are present in the same executable and measured within a
single  process  invocation.  This  executable  is  compiled  with  Rust's  default  release-
mode settings, which includes compiler optimizations. The various datastores are all
initialized before any test runs are made and remain in memory throughout the testing
procedure.

The measurements  themselves  are collected by  the  Criterion benchmarking system
[18]. Criterion tests are not interleaved: Each function is tested to completion before
any other functions are tested. This introduces a potential for bias to be introduced: If
the ambient system load changes while the test program is running, the later tests will
not be comparable to the earlier ones.
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Several steps have been taken to mitigate this risk: The number of programs running at
the same time as the benchmarking program is minimized. While the benchmarking
program is running, the operator monitors system activity using the top program. The
benchmarking program is configured to run the entire test suite twice in succession. If
an anomaly is noted by either of these last two measures, the entire run is rejected as
invalid.

Each function's test proceeds in 3 phases: warmup, measurement, and analysis. The
warmup  phase  runs  the  test  function  constantly  for  60  seconds.  This  allows  the
hardware's  predictive  systems  to  adapt  themselves  to  the  workload  that  will  be
measured. Criterion also uses this opportunity to make a rough estimate of the final
result.

During the measurement phase, 50 timed samples are collected. Each sample involves
running of several  iterations of the test function. This helps mitigate problems that
arise when a single iteration is fast compared to the available timer's resolution. The
particular number of iterations is chosen based on the preliminary estimate collected
during  the  warmup  phase,  with  a  target  duration  of  12  seconds  per  sample.  The
analysis phase then calculates and prints statistics about the function's runtime.

5.2 Performance Results

The measurements were collected on a computer with a 2.8 GHz Intel Core i7-7700HQ
CPU and 64-bit wide DDR4-2400 memory.  Figure 5.1 shows the mean elapsed time
required for  each of  the 20 study implementations on the  three  different synthetic
datasets.  5.1(a)  shows  the  Memquery-based  implementations  and  5.1(b)  shows  the
control implementations. With the exception of structure 5a, which will be explored in
the  discussion  section,  each  Memquery  implementation  has  a  similar  asymptotic
behavior as its counterpart control implementation. As described above, the entire test
battery was run twice. The 90th percentile relative error for any data point between the
two runs was 1.9%, with a maximum of 5.3%.

Figure  5.2 shows  the  minimum,  mean,  and  maximum  observed  ratios  between
Memquery-based query times and the corresponding control times. Structure 5a has
been excluded  from  these  statistics  and  displayed  separately.  As  the  database  size
grows, there is a noticeable reduction in the runtime overhead imposed by Memquery.
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Figure 5.1: Execution time of Memquery and control implementations

Figure 5.2: Runtime overhead of Memquery vs. control implementations
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5.3 Discussion

Memquery shows a 2-3x performance penalty compared to the control implementations
in almost all cases. The discrepancy in the performance of structure 5a is a result of
differing query plans between the control and Memquery implementations. Because the
commitment table is indexed first by  PartId in the control implementation, it must
perform  a  full  scan  of  the  table  to  find  the  entries  for  the  requested  project.  The
Memquery implementation, on the other hand, correctly uses its secondary index to
locate the relevant records without inspecting the entire table. Maintaining this kind of
redundant information in hand-written code is possible, but error-prone.

Selecting  the  wrong  model,  however,  can  incur  a  penalty  of  several  orders  of
magnitude. If Memquery's design allows programmers to use a more appropriate model
than they otherwise would, the corresponding performance increase easily dominates
the  runtime overhead imposed  by  Memquery.  The  ability  to  choose  an  appropriate
model depends on both experience and the programmer's ability to experiment with
different options. 

Listing 5.1 shows the query method body for each of the Structure 2 implementations.
The only difference between Structures 2a and 2b is  the projects table index.  This
change  results  in  a  100x  difference  in  execution  speed  on  the  largest  dataset.  For
Memquery, updating the schema definition is enough: the query method requires no
changes. This is a feature common to all of the Memquery implementations: Changing
the  indices  defined  for  a  relation  will  automatically  change  the  performance
characteristics of any queries made against that relation.

The control implementations, on the other hand, have some substantive differences.
For 2a, it iterates over the entire projects table, filters those results by the provided
project name, and then queries the parts table for each matching entry. 2b, on the other
hand, does a direct lookup of the project name, which returns an Option instead of an
iterator. It then uses  Option::map to conditionally query the parts table if a project
was found. It is interesting to note that the 2a code would continue to work properly in
this  case,  but  would  not  take  advantage  of  the  changed  index.  If  the  programmer
neglects to make this change, the only way to detect the error would be to notice that
the expected performance increase didn't occur.
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Listing 5.1: Query implementations for Structure 2

// Structure 2a, control
self.projects
    .values()
    .filter(move |proj| proj.name == project)
    .for_each(move |proj| {
        proj.parts.values().for_each(|part| out(QueryResultRef {
            part_id: part.id,
            part_name: &part.name,
            quantity_committed: part.quantity_committed,
        }));
    });

// Structure 2b, control
self.projects
    .get(project)
    .map(move |proj| {
        proj.parts.values().for_each(|part| out(QueryResultRef {
            part_id: part.id,
            part_name: &part.name,
            quantity_committed: part.quantity_committed,
        }));
    });

// Structure 2a and 2b, Memquery
self.projects.by_ref()
    .subjoin::<ProjectParts>()
    .where_eq(&ProjectName(String::from(project)))
    .iter_as::<QueryResultRef>()
    .for_each(out)

Though the most performant model for this query, structure 2b provides no access to
part  information  except  by  iterating  through  the  projects  table.  If  this  becomes  a
problem for other queries, it may be necessary to change this relationship. Structure 3b
moves the parts table to the top level of the schema and leaves only the commitment
information  inside  the  projects  table.  These  query  implementations  are  shown  in
Listing 5.2.

Here,  the  Memquery  implementation  needs to  be  adjusted  to  reflect  the  new table
layout. Instead of a single subordinate join on the  ProjectParts field, it performs a
subordinate join on the  ProjCommits field followed by a natural join on the  Parts
table. The remainder of the query code is identical to that of structures 2a and 2b. If
this  change  is  forgotten,  the  compiler  will  reject  the  iter_as call  due  to  missing
columns. It is also possible to define a method responsible for performing these joins
which returns the resulting view, which can be shared among all queries that need this
information.

The  control  implementation  needs  to  add  an  additional  level  of  iteration  with  this
change,  which  increases  the  method  length  by  approximately  50%.  Unlike  the
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Memquery change, there is also no obvious way to extract a method that would reduce
the burden of making corresponding changes to additional query routines.

Listing 5.2 Query implementations for Structure 3b

// Structure 3b, control
self.projects
    .get(project)
    .into_iter()
    .for_each(|proj| {
        proj.parts_committed
            .iter()
            .for_each(|
                (&part_id, &quantity_committed)
            | out(QueryResultRef {
                        part_id,
                        part_name: &self.parts[&part_id].name,
                        quantity_committed,
                    }))
            })

// Structure 3b, Memquery
self.projects.by_ref()
    .subjoin::<ProjCommits>()
    .join(self.parts.by_ref())
    .where_eq(&ProjectName(String::from(project)))
    .iter_as::<QueryResultRef>()
    .for_each(out)

Changing code between any two of these data models shows similar characteristics:
the  hand-written  code  is  all  in  a  similar  style,  but  requires  changes  to  be  made
throughout the query method. There is no single recipe for determining these changes;
each one must be individually engineered based on the details of the storage layout.
The Memquery implementations, on the other hand, all have the same structure. They
build a join view that contains all of the needed columns and then filter and project that
view to describe the query. Though the specification of the join view varies between
data  models,  the  filtering  and  projection  code  is  identical  between  all  10
implementations.
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6 Limitations and Future Work
As presented here,  Memquery sets  down a framework that  can be expanded into a
generally-useful library. It has a number of deficiencies, however, that make it unsuited
for production use in its current form.

Some  of  these  deficiencies  remain  unknown but  can  be  discovered through further
research.  Most  modern  software  architecture  literature  implicitly  assumes  that  a
program's  data  model  will  follow  object-oriented  design.  There  are  significant
differences  between  relational  and  object-oriented  data  modeling.  Like  every  other
software engineering technique, relational modeling isn't a silver bullet. Investigating
how to integrate relational modeling into current software development practices will
inevitably suggest a number of improvements to Memquery's design.

Other  deficiencies  have  presented  themselves  during  the  course  of  Memquery's
development.  The most prominent of these are discussed here, along with potential
strategies to correct them.

6.1 Cross-Relation Constraints

It is often useful to maintain invariants that involve related records of different types.
At present, Memquery provides only limited support for enforcing these. Changes to
individual relations can be held in a transaction until the invariant is checked, but there
is no inherent mechanism to force this check to happen in every case.

In  order  to  provide  this  guarantee,  Memquery's  transaction  system  needs  to  be
extended  to  include a  verification  function.  This  function  would  be  run  during the
commit request, and would be given the opportunity to abort the transaction. There
should also  need be some record of  the changes made during the transaction.  This
would allow the verification function to inspect only those records that were actually
changed.

As part of this work, it probably will be useful to formalize the concept of a schema
which  contains  multiple  relations.  The  schema  would  then  only  provide  access  to
transactions with a verification function that enforces the schema's constraints.

6.2 Adaptation to Other Programming Languages

Languages  like  C++,  C#,  and  Java  are  still  the  dominant  choice  for  systems  and
application programming. Additionally, several popular deployment targets are closely
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integrated with specific programming languages, such as Swift for iPhone applications
and ECMAScript for web applications. While Rust's features make it a good choice for
prototyping Memquery, its audience will remain limited unless it is usable from these
other languages.

The  major  challenge  here  is  Memquery's  reliance  on  static  dispatch  in  Rust's
expressive type system. Porting Memquery to another language would likely require
either a compiler extension or heavier reliance on runtime dispatch, which incurs a
performance penalty. Alternatively, the Rust version of Memquery could be compiled
into a system library that can be linked into applications written in other programming
languages. The wide variety of types used internally by Memquery would, however,
make it difficult to specify an appropriate interface. A final option would be to write a
code generation tool capable of searching a codebase for queries, which then emits a
suitable implementation for each query that is found.

6.3 Execution Speed

As shown in the case study (§5), Memquery is 2-3 times slower than the equivalent
hand-written code. The maintenance benefits provided by Memquery may justify this in
many cases, but there is no inherent reason for the overhead to be this high. Careful
profiling  should  be  able  to  determine  where  this  slowdown  occurs.  It  can  then  be
corrected by either altering Memquery's code or by improving the Rust compiler.

Another potential avenue for improving performance is parallelization. All queries are
currently  performed  on  a  single  processor  core.  Because  queries  are  a  read-only
operation, it should be possible to dispatch some of the work to additional threads, and
then collect the results.

6.4 Additional Relation Types

All  of  the  relations  provided  by  Memquery  are  based  on  Rust's  Option,  Vec,  and
BTreeMap types. While these are sufficient to demonstrate the efficacy of Memquery's
approach, there are many more options that could be considered.

Copy-on-write shared-structure collections, like those provided by the im Rust crate,
could  be  particularly  interesting  to  explore.  They  could  provide  an  inexpensive
snapshot  functionality,  which  could  in  turn  be  used  to  implement  non-blocking
transactions.  Some  threads,  like  those  driving a  user  interface,  could  work  from a
recent snapshot while others are busy performing updates.

Additionally, relations could be added for indexing specialty datasets. Geospatial data
have unique query  requirements,  for  example,  which  are  not  a  good  match  for  the
current  one-column-at-a-time  model.  Adding  support  for  a  geospatial  index  would
require defining a new query filter type and a corresponding index relation that can
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process it efficiently. This would enable Memquery to efficiently query relations that
contain mixed data: Queries containing a geospatial filter term will be served by the
specialty index, and all other queries can be served by Memquery's built-in indices and
relations.

6.5 Additional Relational Operators

Memquery  currently  has  no  support  for  two  of  the  relational  operators  that  Codd
described in his original paper: Column renaming and cyclical joins. Adding support for
column  renaming  would  be  relatively  straightforward,  but  involves  a  significant
amount of work: A suitable rename operator needs to be defined for columns, records,
query filter terms, and sort keys. Once these have been developed, a relation adapter to
rename a column A to column B can be written which renames B to A in incoming
query requests, and then A to B in the results.

Cyclical joins rely on the gamma operator, which selects records where two different
columns A and B contain the same value. Defining a filter term which tests for this
condition is trivial, but optimizing it is not. One approach would be to define a value-
binding operation for filter terms.  Then, when a query plan knows that the value of A
will be constant for all  results from a subquery, it can pass that information to the
subquery's planner. The subquery planner can, in turn, use this information to reduce
the candidate rows that it considers.

6.6 Aggregate Queries

Some common database  operations,  like  grouping and aggregation,  are  not  directly
supported by Memquery:  Queries only return references to pre-existing records.  To
perform these operations in the current version of Memquery, the user needs to select
the involved records and then manually perform the aggregation. This hinders the use
of aggregate results as relations in further calculations.

The primary blocker for building a relation adapter to represent these queries is the
lack of a place to store generated values in a query result. One approach would be to
cache the generated values inside the adapter itself,  but properly evicting unneeded
results from the cache may prove difficult.

6.7 Join Efficiency

Currently, querying a join always dispatches a subquery to both source relations. There
are  some  cases  where  this  is  not  necessarily  required,  however:  Consider  a  join
between relations A and B, on column K, where every record in B has a unique value
for K. If all of the requested columns are present in A and A contains no K values that
are absent from B, there is no need to inspect B to produce the results.
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There are two potential  ways to  handle this  situation in  Memquery.  The first  is  to
include a list of output columns in the query request and allow each query to return a
different record type.  This is  how Memquery was originally  designed;  for  anything
except  the  most  trivial  cases,  it  proved  intractable  for  Rust's  current  trait  solver.
Improvements to the trait solver could make this approach viable in the future.

The other is for this foreign-key join to return a record type that defers querying B until
one of its columns is requested. This should be viable without changes to the compiler,
but may introduce undesirable performance variability. At the moment, retrieving a
column  value  from  a  returned  record  is  always  a  trivial  operation.  Adopting  this
strategy would make the first retrieval of a column from  B take significantly longer
than any other similar operation, as it would need to find and cache the corresponding
record in B.
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7 Conclusion
There are many different strategies for organizing application data in memory,  and
each has both benefits and drawbacks. A simple unordered array, for example, can both
add new records quickly and efficiently iterate over all records. Accessing a particular
record, however, is quite inefficient. If the array is sorted, looking up a record by its
sort key is efficient, but adding a new record requires moving existing ones to make
space. These are by no means the only two approaches available: A staple of computer
science research is to develop and analyze new strategies for storing and retrieving
data.

Every application has its own set  of  operational constraints,  which means that  the
correct strategy for one application may be different from that of another. Often, the
full set of operational constraints is not known during development. Instead, some can
only  be  discovered  by  observing  the  program  in  situ.  Further,  the  operational
constraints  placed  on  a  program  can  change  over  time  as  users  modify  their  own
behavior in response to the program.

In order to adapt a program to these changing circumstances, it may be necessary to
revisit the storage strategy that the program uses internally. If these various storage
strategies can all  present a common interface to other components of the program,
replacing one with another will be both cheaper and less error-prone.

Relational algebra describes such a common interface. Over a half-century of use in
databases, it has proven to effectively balance the needs of all stakeholders. Users can
retrieve  the  data  they  need  without  understanding  how  it  is  organized  on  disk,
Administrators can reorganize data to meet changing demands, and database system
designers can invent new ways of organizing data for better performance. Each of these
three activities can occur independently, without coordination with the others.

By  adopting  the  relational  algebra  model,  Memquery  brings  these  advantages  to
general-purpose programming. Application programmers can access the data they need,
architects can reorganize the program's data storage to meet changing demands, and
library authors can develop new tools to improve performance.
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Appendix A: Turing Completeness of Rust's Type System
One  way  to  demonstrate  that  Rust's  type  system  is  Turing-complete  is  by
implementing the SK basis combinators [19]. Such an implementation is given below:
All valid SK expressions implement the Derive trait, which produces the expression's
normal form as Derive::Result. If an expression does not have a normal form or is
exceptionally complicated to resolve, the compiler will halt when its internal recursion
limit is reached.

Each implementation of the  DeriveStep trait describes a single derivation step. The
DeriveStep::Continue type indicates whether  or  not  any derivations were made.
The  DeriveCont trait  then  uses  this  information  to  iterate  until  a  fixed  point  is
reached.

struct True;
struct False;

struct S;
struct K;
type I = ((S,K),K);

trait DeriveStep {
    type Continue;
    type Result;
}

trait Or { type Result; }

impl Or for (False, False) { type Result = False; }
impl Or for (True, False) { type Result = True; }
impl Or for (False, True) { type Result = True; }
impl Or for (True, True) { type Result = True; }

// No arguments
impl DeriveStep for S {
    type Continue = False;
    type Result = S;
}

impl DeriveStep for K { 
    type Continue = False; 
    type Result = K; 
} 
 
// One argument 
impl<X> DeriveStep for (S,X) 
    where X: DeriveStep 
{ 
    type Continue = X::Continue; 
    type Result = (S, X::Result); 
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} 
 
impl<X> DeriveStep for (K,X) 
    where X:DeriveStep 
{ 
    type Continue = X::Continue; 
    type Result = (K, X::Result); 
} 
 
// Two arguments 
impl<X,Y> DeriveStep for ((K,X), Y) 
    where X:DeriveStep 
{ 
    type Continue = True; 
    type Result = X::Result; 
} 
 
impl<X,Y,Cont> DeriveStep for ((S,X), Y) where 
    X:DeriveStep, 
    Y:DeriveStep, 
    (X::Continue, Y::Continue): Or<Result=Cont> 
{ 
    type Continue = Cont; 
    type Result = ((S, X::Result), Y::Result); 
} 

// Three arguments
impl<X,Y,Z> DeriveStep for (((S, X), Y), Z) where
    X:DeriveStep,
    Y:DeriveStep,
    Z:DeriveStep
{
    type Continue = True;
    type Result = ((X::Result, Z::Result),
                   (Y::Result, Z::Result));
}

impl<X,Y,Z> DeriveStep for (((K,X), Y), Z) where
    X:DeriveStep,
    Z:DeriveStep,
{
    type Continue = True;
    type Result = (X::Result, Z::Result);
}

// 4+ Arguments
impl<V,W,X,Y,Z,A,ACont,ZCont,Cont> DeriveStep for ((((V,W), X), Y), Z) 
where
    (((V,W), X), Y): DeriveStep<Result = A, Continue=ACont>,
    Z: DeriveStep<Continue = ZCont>,
    (ACont, ZCont): Or<Result = Cont>,
{
    type Continue = Cont;
    type Result = (A, Z::Result);
}

trait DeriveCont<Expr> { type Result; }
impl<Expr> DeriveCont<Expr> for False { type Result = Expr; }
impl<Expr> DeriveCont<Expr> for True where
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    Expr: DeriveStep,
    Expr::Continue: DeriveCont<Expr::Result>
{
    type Result = <Expr::Continue as DeriveCont<Expr::Result>>::Result;
}

trait Derive { type Result; }

impl<Expr> Derive for Expr where True: DeriveCont<Expr> {
    type Result = <True as DeriveCont<Expr>>::Result;
}
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Appendix B: Case Study Schemas
This chapter contains the Memquery schema definitions used in the case study (§5).
Ellipses indicate omitted implementation details.

Common Definitions

col!{ pub PartId:       usize  }
col!{ pub PartName:     String }
col!{ pub PartDesc:     String }
col!{ pub QtyOnHand:    usize  }
col!{ pub QtyOnOrder:   usize  }
col!{ pub ProjectId:    usize  }
col!{ pub ProjectName:  String }
col!{ pub ProjectDesc:  String }
col!{ pub QtyCommitted: usize  }

pub struct Project { ... }
pub struct Part { ... }
pub struct Commit { ... }
pub struct QueryResultRef<'a> { ... }

impl Record for Project {
    type Cols = sexpr!{ProjectId, ProjectName, ProjectDesc};
    ...
}

impl Record for Part {
    type Cols = sexpr!{
        PartId, PartName, PartDesc, QtyOnHand, QtyOnOrder
    };
    ...
}

impl Record for Commit {
    type Cols = sexpr!{PartId, ProjectId, QtyCommitted};
    ...
}

impl<'a> FromExternalRecord<'a> for QueryResultRef<'a> {
    type Cols = sexpr!{PartId, PartName, QtyCommitted};
    ...
}
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Structure 1a: Projects Subordinate to Parts

col!{ PartProjects:
  RelProxy<Rc<
    BTreeIndex<ProjectId,
      Option<(Project, QtyCommitted)>>>>
}

pub struct Inventory {
    parts: BTreeIndex<PartId,
             Option<(Part, PartProjects)>>,
}

Structure 1b: Projects Subordinate to Parts

col!{ PartProjects:
  RelProxy<Rc<
    BTreeIndex<ProjectName,
      Option<(Project, QtyCommitted)>>>>
}

pub struct Inventory {
    parts: BTreeIndex<PartId,
             Option<(Part, PartProjects)>>,
}

Structure 2a: Parts Subordinate to Projects

col!{ ProjectParts:
  RelProxy<Rc<
    BTreeIndex<PartId,
      Option<(Part, QtyCommitted)>>>>
}

pub struct Inventory {
    projects: BTreeIndex<ProjectId,
                Option<(Project, ProjectParts)>>,
}

Structure 2b: Parts Subordinate to Projects

col!{ ProjectParts:
  RelProxy<Rc<
    BTreeIndex<PartId,
      Option<(Part, QtyCommitted)>>>>
}

pub struct Inventory {
    projects: BTreeIndex<ProjectName,
                Option<(Project, ProjectParts)>>,
}
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Structure 3a: Parts and Projects as Peers, Commits Subordinate to Projects

col!{ ProjCommits:
  RelProxy<Rc<
    BTreeIndex<PartId,
      Option<(PartId, QtyCommitted)>>>>
}

pub struct Inventory {
    parts:    BTreeIndex<PartId,
                Option<Part>>,
    projects: BTreeIndex<ProjectId,
                Option<(Project, ProjCommits)>>,
}

Structure 3b:  Parts and Projects as Peers, Commits Subordinate to Projects

col!{ ProjCommits:
  RelProxy<Rc<
    BTreeIndex<PartId,
      Option<(PartId, QtyCommitted)>>>>
}

pub struct Inventory {
    parts:    BTreeIndex<PartId,
                Option<Part>>,
    projects: BTreeIndex<ProjectName,
                Option<(Project, ProjCommits)>>,
}

Structure 4a: Parts and Projects as Peers, Commits Subordinate to Parts

col!{ PartCommits:
  RelProxy<Rc<
    BTreeIndex<ProjectId,
      Option<(ProjectId, QtyCommitted)>>>>
}

pub struct Inventory {
    parts:    BTreeIndex<PartId,
                Option<(Part, PartCommits)>>,
    projects: BTreeIndex<ProjectId,
                Option<Project>>,
} 
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Structure 4b: Parts and Projects as Peers, Commits Subordinate to Parts

col!{ PartCommits:
  RelProxy<Rc<
    BTreeIndex<ProjectName,
      Option<(ProjectName,QtyCommitted)>>>>
}

pub struct Inventory {
    parts:    BTreeIndex<PartId,
                Option<(Part, PartCommits)>>,
    projects: BTreeIndex<ProjectName,
                Option<Project>>,
}   

Structure 5a: Parts, Projects, and Commits as Peers

pub struct Inventory {
    parts:    BTreeIndex<PartId,
                Option<Part>>,
    projects: BTreeIndex<ProjectId,
                Option<Project>>,
    commits:  RedundantIndex<ProjectId, PartId,
                BTreeIndex<PartId,
                  Vec<Commit>>>,
}

Structure 5b: Parts, Projects, and Commits as Peers

pub struct Inventory {
    parts:    BTreeIndex<PartId,
                Option<Part>>,
    projects: RedundantIndex<ProjectName, ProjectId,
                BTreeIndex<ProjectId,
                  Option<Project>>>,
    commits: BTreeIndex<ProjectId,
               BTreeIndex<PartId,
                 Option<Commit>>>,
}
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Appendix C: Rust Standard Library
This chapter contains brief descriptions of the types and traits from Rust's standard
library  which  are  referred  to  in  this  paper.  For  more  detail,  refer  to  the  official
documentation9.

&T type A shared reference to a value of type T

&mut T type An exclusive reference to a value of type T

Any trait Used for downcasting from generic to concrete types

Arc<T> type A thread-safe reference with shared ownership

AsRef<T> trait Used to obtain a shared reference to a value of type T

AsMut<T> trait Used to obtain an exclusive reference to a value of type T

bool type A Boolean value

Borrow<T> trait Indicates that Self shares several properties with the type
T, such as ordering, and can produce a shared reference to a
value of type T

BorrowMut<T> trait Indicates that Self shares several properties with the type
T,  such  as  ordering,  and  can  produce  and  exclusive
reference to a value of type T

Bound<T> type An enumeration that describes one end of a range. Its value
may be Included(T), Excluded(T), or Unbounded

Box<T> type An owned, heap-allocated value of type T

BTreeSet<T> type An ordered collection containing values of type T, with no
duplicates

Clone trait Used to duplicate values

Copy trait Marker  that  indicates  a  bitwise  copy  is  sufficient  to
duplicate values

Default trait Provides  a  constructor,  default(),  which  takes  no
arguments

Deref trait Describes the behavior of the dereferencing operator (*) in
immutable contexts.

9 https://doc.rust-lang.org/std/index.html
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DerefMut trait Describeds the behavior of the dereferencing operator (*) in
mutable contexts

Eq trait Defines the behavior of the equality operator (==)

Fn trait A closure that can be called via shared reference

FnMut trait A closure that can be called via exclusive reference

FnOnce trait A closure that can be called by consuming Self

From<T> trait Provides a constructor that takes a single argument of type
T

Into<T> trait Provides a method to consume Self and produce a value of
type T

IntoIterator trait Indicates  that  Self can  be  used  to  produce  an  iterator,
usually implemented for collection types

Iterator trait Provides a mechanism to produce a sequence of values, one
at a time

Option<T> type An enumeration that represents a possibly-missing value.
Its value may be either None or Some(T)

Ord trait Indicates that values of type  Self have a total  ordering;
defines the behavior of comparison operators

Rc<T> type A reference to a value of type T with shared ownership

Result<T,E> type An  enumeration  that  represents  the  result  of  a  fallible
operation. Its value may be either Ok(T) or Err(E)

Sized trait A  marker  that  indicates  values  of  type  Self have  a
compile-time known size

String type Owned UTF-8 encoded textual data, stored on the heap

str type UTF-8  encoded  textual  data,  with  length  known only  at
runtime. Usually appears behind a shared reference: &str

u32 type A 32-bit unsigned integer

usize type An unsigned integer with architecture-dependent width

Vec<T> type A growable collection containing values of type T, stored in
a contiguous region of memory on the heap
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